Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A biological solution to animal pandemics

27.09.2010
EUREKA project E! 4104 ECOPROMAT has developed a novel and environmentally-friendly type of matting for use in protection against the spread of contagious animal diseases such as avian influenza, and for routine hygiene in animal and food production. Soaked with disinfectant solution, the matting can be used for disinfecting vehicle tyres, and the shoes and boots of personnel.

As it is made of 100% natural fibres, it is highly absorbent to disinfectant solution; it is also fully biodegradable and therefore avoids the high disposal costs of synthetic alternatives. The under-surface is made of densely woven fabric for strength, and impregnated with natural resin to prevent seepage of disinfectant into the ground, or dilution of disinfectant by ground water.

Outbreaks of contagious animal diseases like avian flu, foot-and-mouth disease and bovine spongiform encephalopathy (BSE), cause national and regional public health authorities take extensive steps to prevent these diseases from spreading. The economic costs of such outbreaks are hard to estimate, but they can cause major disruption to agricultural production and food distribution, also environmental challenges in disposal of infected animals and contaminated materials; plus widespread public anxiety.

Stopping the spread of disease

Most animal diseases are spread on clothing, footwear or farm tools, equipment or the tyres of vehicles visiting farms with infected animals. When public health measures are imposed, personnel are required to pass through disinfection barriers in order to stop the transportation of bacterial or viral particles.

The various methods in use until now all have disadvantages. Requiring people and vehicles to pass through a shallow bath of disinfectant solution or a trough of sawdust or wood chips soaked in disinfectant is cumbersome, costly and requires labour for replacement. Another approach is a mat with an outer polyester layer, an absorbent layer made of polyurethane and a third PVC layer to prevent disinfectant from penetrating into the ground; or a nylon fibre mat backed with nitrile rubber. However the raw materials used in those mats make disposal difficult and costly, requiring special treatment plants for degradation.

Natural fibres are the solution

The new matting developed by the ECOPROMAT partners is also composed of three layers, but uses only natural materials. The lowest layer is a densely woven hemp, flax or jute fabric chosen for its toughness, resistance and flexibility, and stitched in hemp or jute fibres. This layer is finished by impregnation with natural resins, which prevent seepage of the disinfectant into the ground, and also prevent dilution of the disinfectant by absorption of ground water. The central layer of the mat is highly absorbent, non-woven material which is significantly more hygroscopic than the synthetic alternative. The upper layer is woven, needle-punched jute fabric, which is protective and durable to protect the central reservoir from pressure e.g. from vehicles driven over it. Dr Jerzy Mankowski of the Polish Institute of Natural Fibres & Medicinal Plants explains that unlike the synthetic alternatives, matting made of flax and hemp fibres is completely biodegradable and environmentally friendly.

The Institute of Natural Fibres, which led the ECOPROMAT project, was partnered by the German company, Bioformtex from Zehdenik. The main task of the Institute was to develop the three-layer non-woven product with appropriate strength, thickness and weight, to allow for proper absorption of disinfectant solution but not allowing penetration of the disinfectant into the ground. Various combinations of flax and hemp were tested to determine the mechanical and needling parameters affecting the tensile strength and recovery potential; to determine the most suitable and cost-effective textile material for the lowest layer.

Bioformtex developed the dense, non-woven central layer and the needle-punched jute upper layer. It also investigated the addition of disinfectant in powder form to the nonwoven layer during production, and developed composting accelerators to aid degradation of the natural resin in the matting.

Into production

The matting is now manufactured by Bioformtex and by another company not involved in the original project: Lenkon, from Poland. Total mat production has reached about half a million square metres per year. The Polish animal medicines company BIOWET Drwalew, which supplies disinfectants and related equipment, is supplying the matting to commercial users. Return on the project investment is anticipated within 4-5 years.

The matting is covered by Polish and European patents, and is being used in poultry, pig and cattle production units, dairies, meat processing plants and slaughterhouses, apiaries, and food processing areas. It is also used for more general antibacterial hygiene, e.g. mushroom-growing cellars and greenhouses; agricultural research centres, border crossings and quarantine areas.

The initial cost of the new matting is low - between €10-12 per square metre, which is a significant saving on synthetic matting at €15-20 per square metre. Cost saving also results from the biodegradability of the new natural-fibre matting, which means that contaminated matting can be disposed of much more readily and cheaply than the synthetic alternatives.

Prizewinning innovation

Participating in the international EUREKA project was felt to be very beneficial to the partners. "The Institute's participation in the project allowed us to use test equipment not previously available in our laboratories," says Jerzy Mankowski. "This resulted in improving the research potential of the Institute." As a result of the project, the new matting material has received numerous awards for innovation, including gold medals at the EUREKA Fair in Brussels and the Salon International des Inventions in Geneva.

Piotr Pogorzelski | EurekAlert!
Further information:
http://www.eurekanetwork.org

Further reports about: Bioformtex ECOPROMAT EUREKA animal disease ground water public health raw material

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>