Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new avenue to better medicines: metal-peptide complexes

09.07.2012
Selectively modifying hormones and using them as medicinal substances
German-American research team produces metal-peptide complexes

Researchers at the RUB and from Berkeley have used metal complexes to modify peptide hormones. In the Journal of the American Chemical Society, they report for the first time on the three-dimensional structure of the resulting metal-peptide compounds.

“With this work, we have laid the molecular foundation for the development of better medicines” says Prof. Raphael Stoll from the Faculty of Chemistry and Biochemistry at the Ruhr-University. The team examined hormones that influence the sensation of pain and tumour growth.

Peptide hormones have many functions in the body

Hormones consisting of amino acids, the peptide hormones, convey bodily sensations such as pain and hunger, but also transmit growth signals. One example of this is insulin, which is important for the control of blood sugar levels. In interaction with specific receptors, the G-protein-coupled receptors, peptide hormones transport their messages to the cells. The hormones can be specifically chemically modified so that their effect changes, for example pain tolerance is lowered, or tumour growth inhibited. The German-Californian group of researchers has now found a new way to modify peptide hormones.

Metal complexes react with various peptide hormones

The first time they used a metal complex, namely, a rhodium compound, which reacts with the amino acid tyrosine. The precious metal rhodium is used as a catalyst in the synthesis of highly complex medicinal substances in the research laboratory as well as in industrial plants. Among other things, the researchers analysed the peptide hormone encephalin, which is important for the sensation of pain, and octreotide. The latter is a synthetic derivative of the growth hormone somatostatin, approved as a medicinal substance and already used in the treatment of certain tumours. The reaction with the metal complex was highly selective. Although the hormones consist of hundreds of atoms, the rhodium compound was always coordinated by the carbon ring of the tyrosine - the phenol ring.

Structure determined by NMR spectroscopy

The team also clarified the structure of the resulting metal-peptide complexes. “We hope to develop other metal-containing, peptide-like substances by building on these basic studies” says Prof. Dr. Nils-Metzler-Nolte of the Chair of Inorganic Chemistry I. “These could modulate the effect of naturally occurring peptide hormones and, for example, be used as a novel remedy for pain or cancer”. For the project, the Californian colleagues made their knowledge of the special reactivity of the rhodium compound available. The researchers in Bochum contributed their experience with metal-peptides, the corresponding receptors and the structural analysis of biological macromolecules. “This again demonstrates that cutting-edge competitive research can only be carried out efficiently within a research association”, says Prof. Stoll. The German Research Foundation (SFB 642 and Research Unit 630) and the Research Department for Interfacial Systems Chemistry at RUB supported the work.

Bibliographic record

H. Bauke Albada, F. Wieberneit, I. Dijkgraaf, J.H. Harvey, J.L. Whistler, R. Stoll, N. Metzler-Nolte, R.H. Fish (2012): The chemoselective reactions of tyrosine-containing G-protein-coupled receptor peptides with [Cp*Rh(H2O)3](OTf)2, including 2D NMR structures and the biological consequences, Journal of the American Chemical Society, doi: 10.1021/ja303010k

Further information

Prof. Dr. Nils Metzler-Nolte, Inorganic Chemistry I, Faculty of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24153

nils.metzler-nolte@rub.de

Prof. Dr. Raphael Stoll, Biomolecular Spectroscopy, Faculty of Chemistry and Biochemistry at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-25466

raphael.stoll@rub.de

Click for more

Medical inorganic chemistry at the RUB
http://www.chemie.rub.de/ac1/index.html
Biomolecular spectroscopy at the RUB
http://www.ruhr-uni-bochum.de/bionmr/index_en.html
Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>