Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Approach to Malaria Treatment?

21.01.2014
Halogenated natural alkaloids show herbicidal and antiplasmodial activity

Two of the most urgent challenges for scientists are the battles against food shortages and infectious diseases like malaria.



Unfortunately, both the herbicides used to protect plants and the anti-infectives that shield us from disease rapidly lose their effectiveness as the target organisms develop resistance.

In order to benefit both fields at once, scientists tested lead compounds from agrochemical research against infectious germs as well. In this way, a team of German and Swiss researchers has found a new candidate that may work against malaria, as they report in the journal Angewandte Chemie.

“Recently, enzymes from the non-mevalonate terpene biosynthetic pathway have been identified as attractive target structures with novel modes of activity for the development of herbicides and drugs against infectious diseases,” explains François Diederich from the ETH Zurich (Switzerland).

“This biosynthetic pathway is found in many human pathogens and in plants, but does not occur in mammals.” Correspondingly, an inhibitor should only have a toxic effect on pathogens and plants, not humans. Diederich and his co-workers at the ETH, TU Munich, BASF-SE, the University of Hamburg, the Swiss Tropical Institute STPHI in Basel, and TU Dresden have now discovered new inhibitors and characterized the ways in which they work.

By using high-throughput screening methods, the researchers of BASF SE led by Matthias Witschel tested about 100,000 compounds for an inhibitory effect against plant IspD, an enzyme of the aforementioned non-mevalonate terpene biosynthetic pathway – and found several hits.

The most interesting compounds are pseudilins, highly halogenated alkaloids from marine bacteria, and have a significant inhibitory effect on IspD, as researchers at the TU Munich led by Michael Groll demonstrated in NMR-based tests and researchers at the University of Hamburg led by Markus Fischer showed in photometric tests. Says Groll: “Interestingly, the chemical scaffold of the pseudilins is completely different from that of a previously discovered IdpD inhibitor. This suggests that the mode of action should also be different.”

To research this mechanism, Andrea Kunfermann from Groll’s team synthesized cocrystals of the pseudilins and IspD enzymes and examined them by X-ray crystallography. This showed that the pseudilins bind to an allosteric pocket in the enzyme. Halogen atoms in the pseudilins build up halogen bridges to the enzyme, which are, in addition to metal ion coordination, responsible for the strong binding. Occupation of this pocket changes the shape of the enzyme so that a cosubstrate required for proper functioning of the enzyme can no longer dock at the binding site in the active center.

“The pseudilins demonstrated herbicidal activity in plant assays and were active against Plasmodium falciparum, the pathogen that causes Malaria tropica and is dependent on the non-mevalonate biosynthesis pathway for survival,” reports Diederich. The researchers hope to use this as a new starting point for malaria treatment.

About the Author
François Diederich is a professor at ETH Zürich, Michael Groll is a professor at TU München, Markus Fischer is a professor at the University of Hamburg, and Matthias Witschel is a scientist at BASF SE working in the field of crop protection.
Author: François Diederich, ETH Zürich (Switzerland), http://www.diederich.chem.ethz.ch/
Title: Pseudilins: Halogenated, Allosteric Inhibitors of the Non-Mevalonate Pathway Enzyme IspD

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309557

François Diederich | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.diederich.chem.ethz.ch/

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>