Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Approach to Malaria Treatment?

21.01.2014
Halogenated natural alkaloids show herbicidal and antiplasmodial activity

Two of the most urgent challenges for scientists are the battles against food shortages and infectious diseases like malaria.



Unfortunately, both the herbicides used to protect plants and the anti-infectives that shield us from disease rapidly lose their effectiveness as the target organisms develop resistance.

In order to benefit both fields at once, scientists tested lead compounds from agrochemical research against infectious germs as well. In this way, a team of German and Swiss researchers has found a new candidate that may work against malaria, as they report in the journal Angewandte Chemie.

“Recently, enzymes from the non-mevalonate terpene biosynthetic pathway have been identified as attractive target structures with novel modes of activity for the development of herbicides and drugs against infectious diseases,” explains François Diederich from the ETH Zurich (Switzerland).

“This biosynthetic pathway is found in many human pathogens and in plants, but does not occur in mammals.” Correspondingly, an inhibitor should only have a toxic effect on pathogens and plants, not humans. Diederich and his co-workers at the ETH, TU Munich, BASF-SE, the University of Hamburg, the Swiss Tropical Institute STPHI in Basel, and TU Dresden have now discovered new inhibitors and characterized the ways in which they work.

By using high-throughput screening methods, the researchers of BASF SE led by Matthias Witschel tested about 100,000 compounds for an inhibitory effect against plant IspD, an enzyme of the aforementioned non-mevalonate terpene biosynthetic pathway – and found several hits.

The most interesting compounds are pseudilins, highly halogenated alkaloids from marine bacteria, and have a significant inhibitory effect on IspD, as researchers at the TU Munich led by Michael Groll demonstrated in NMR-based tests and researchers at the University of Hamburg led by Markus Fischer showed in photometric tests. Says Groll: “Interestingly, the chemical scaffold of the pseudilins is completely different from that of a previously discovered IdpD inhibitor. This suggests that the mode of action should also be different.”

To research this mechanism, Andrea Kunfermann from Groll’s team synthesized cocrystals of the pseudilins and IspD enzymes and examined them by X-ray crystallography. This showed that the pseudilins bind to an allosteric pocket in the enzyme. Halogen atoms in the pseudilins build up halogen bridges to the enzyme, which are, in addition to metal ion coordination, responsible for the strong binding. Occupation of this pocket changes the shape of the enzyme so that a cosubstrate required for proper functioning of the enzyme can no longer dock at the binding site in the active center.

“The pseudilins demonstrated herbicidal activity in plant assays and were active against Plasmodium falciparum, the pathogen that causes Malaria tropica and is dependent on the non-mevalonate biosynthesis pathway for survival,” reports Diederich. The researchers hope to use this as a new starting point for malaria treatment.

About the Author
François Diederich is a professor at ETH Zürich, Michael Groll is a professor at TU München, Markus Fischer is a professor at the University of Hamburg, and Matthias Witschel is a scientist at BASF SE working in the field of crop protection.
Author: François Diederich, ETH Zürich (Switzerland), http://www.diederich.chem.ethz.ch/
Title: Pseudilins: Halogenated, Allosteric Inhibitors of the Non-Mevalonate Pathway Enzyme IspD

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309557

François Diederich | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.diederich.chem.ethz.ch/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>