Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Approach to Malaria Treatment?

21.01.2014
Halogenated natural alkaloids show herbicidal and antiplasmodial activity

Two of the most urgent challenges for scientists are the battles against food shortages and infectious diseases like malaria.



Unfortunately, both the herbicides used to protect plants and the anti-infectives that shield us from disease rapidly lose their effectiveness as the target organisms develop resistance.

In order to benefit both fields at once, scientists tested lead compounds from agrochemical research against infectious germs as well. In this way, a team of German and Swiss researchers has found a new candidate that may work against malaria, as they report in the journal Angewandte Chemie.

“Recently, enzymes from the non-mevalonate terpene biosynthetic pathway have been identified as attractive target structures with novel modes of activity for the development of herbicides and drugs against infectious diseases,” explains François Diederich from the ETH Zurich (Switzerland).

“This biosynthetic pathway is found in many human pathogens and in plants, but does not occur in mammals.” Correspondingly, an inhibitor should only have a toxic effect on pathogens and plants, not humans. Diederich and his co-workers at the ETH, TU Munich, BASF-SE, the University of Hamburg, the Swiss Tropical Institute STPHI in Basel, and TU Dresden have now discovered new inhibitors and characterized the ways in which they work.

By using high-throughput screening methods, the researchers of BASF SE led by Matthias Witschel tested about 100,000 compounds for an inhibitory effect against plant IspD, an enzyme of the aforementioned non-mevalonate terpene biosynthetic pathway – and found several hits.

The most interesting compounds are pseudilins, highly halogenated alkaloids from marine bacteria, and have a significant inhibitory effect on IspD, as researchers at the TU Munich led by Michael Groll demonstrated in NMR-based tests and researchers at the University of Hamburg led by Markus Fischer showed in photometric tests. Says Groll: “Interestingly, the chemical scaffold of the pseudilins is completely different from that of a previously discovered IdpD inhibitor. This suggests that the mode of action should also be different.”

To research this mechanism, Andrea Kunfermann from Groll’s team synthesized cocrystals of the pseudilins and IspD enzymes and examined them by X-ray crystallography. This showed that the pseudilins bind to an allosteric pocket in the enzyme. Halogen atoms in the pseudilins build up halogen bridges to the enzyme, which are, in addition to metal ion coordination, responsible for the strong binding. Occupation of this pocket changes the shape of the enzyme so that a cosubstrate required for proper functioning of the enzyme can no longer dock at the binding site in the active center.

“The pseudilins demonstrated herbicidal activity in plant assays and were active against Plasmodium falciparum, the pathogen that causes Malaria tropica and is dependent on the non-mevalonate biosynthesis pathway for survival,” reports Diederich. The researchers hope to use this as a new starting point for malaria treatment.

About the Author
François Diederich is a professor at ETH Zürich, Michael Groll is a professor at TU München, Markus Fischer is a professor at the University of Hamburg, and Matthias Witschel is a scientist at BASF SE working in the field of crop protection.
Author: François Diederich, ETH Zürich (Switzerland), http://www.diederich.chem.ethz.ch/
Title: Pseudilins: Halogenated, Allosteric Inhibitors of the Non-Mevalonate Pathway Enzyme IspD

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309557

François Diederich | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.diederich.chem.ethz.ch/

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>