Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new approach to faster anticancer drug discovery

14.03.2012
Tracking the genetic pathway of a disease offers a powerful, new approach to drug discovery, according to scientists at the University of California, San Diego School of Medicine who used the approach to uncover a potential treatment for prostate cancer, using a drug currently marketed for congestive heart failure. Their findings are published in the current online issue of the Proceedings of the National Academy of Sciences.

"The science of genomics – the study of all of the genes in a person and how these genes interact with each other and the environment – has revealed many fundamental aspects of biology, including the mechanisms of diseases like cancer. But it has not yet been truly exploited to find new medicines to treat those diseases," said Xiang-Dong Fu, PhD, professor of cellular and molecular medicine and senior author of the PNAS paper.

Fu, with colleagues at UC San Diego and elsewhere, describe a unique screening strategy that compares genes associated with specific disease phenotypes (traits) with small molecules capable of intervening with disease-linked gene-expression events. The high-throughput process, capable of analyzing large numbers of genes and drugs simultaneously, emphasizes investigation of the entire genetic pathway of the disease against a large set of internal controls, rather than its limited phenotype or any particular molecular or cellular target.

Historically, drug discovery has been driven by phenotype- or target-based methodologies.

"For 50 years, the standard phenotype approach emphasized the final outcome without worrying about the mechanism," said Fu. "The process has produced some very good drugs, but researchers often didn't know exactly how or why the drug worked. Aspirin is an example. It's been around for more than a century, but we still don't understand the mechanism in great detail."

More recently, many drug designers have focused upon targeting particular components of a disease, such as a vital molecule or receptor involved in the pathogenic process. The approach has a stronger, more rational scientific basis, said Fu, but remains beset by two fundamental difficulties: "You can create a drug that disrupts a specific disease target, but you also run the risk of causing unforeseen, adverse side effects that might be worse than the disease. Second, there are many places inside of a cell that are essentially 'undruggable.' They are difficult, if not impossible, to intervene with."

The new approach attempts to avoid these problems by emphasizing investigation of the genetic pathways associated with disease processes and how they might be altered to produce a healthful benefit.

"The idea is to identify the genetic troublemakers associated with a disease and then find a way to contain them, not crush them," said Fu. "No gene was ever designed to cause disease. The goal is to find new drugs or ways to convert these genes or the affected cells back to a normal state. In many disease paradigms, you don't want to kill cells. You want to modify them to become healthy again."

While the idea of conducting multi-target screenings is not new, the technology to do so has been limited. Deep sequencing, said Fu, is ideally suited for the purpose.

To illustrate the efficacy of their high-throughput, gene-sequencing approach, Fu and colleagues applied the strategy to prostate cancer, which sometimes becomes resistant to standard antiandrogen hormone therapy. The scientists found that Peruvoside, a cardiac glycoside, strongly inhibits both androgen-sensitive and androgen-resistant prostate cancer cells without triggering severe side effects. Interestingly, a related cardiac glycoside called Digoxin has been used to treat congestive heart failure. A large epidemiological study found protective effects against prostate cancer on patients treated with Digoxin, compared to control cohorts.

"High-throughput genetic sequencing and screening allows you to look deeply into cells and analyze millions of molecules at the same time. The technology is constantly improving and getting cheaper. We think it's a promising strategy for drug discovery," said Fu.

Co-authors include Hairi Li, Dong Wang, Jinsong Qiu, Yu Zhou, UCSD Department of Cellular and Molecular Medicine; Hongyan Zhou and Sheng Ding, Gladstone Institute of Cardiovascular Disease; Xianqiang Li, Signosis, Inc.; and Michael G. Rosenfeld, Howard Hughes Medical Institute, UCSD Department of Medicine.

Funding for this research came, in part, from the Prostate Cancer Foundation and the National Human Genome Research Institute.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>