Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new approach to faster anticancer drug discovery

14.03.2012
Tracking the genetic pathway of a disease offers a powerful, new approach to drug discovery, according to scientists at the University of California, San Diego School of Medicine who used the approach to uncover a potential treatment for prostate cancer, using a drug currently marketed for congestive heart failure. Their findings are published in the current online issue of the Proceedings of the National Academy of Sciences.

"The science of genomics – the study of all of the genes in a person and how these genes interact with each other and the environment – has revealed many fundamental aspects of biology, including the mechanisms of diseases like cancer. But it has not yet been truly exploited to find new medicines to treat those diseases," said Xiang-Dong Fu, PhD, professor of cellular and molecular medicine and senior author of the PNAS paper.

Fu, with colleagues at UC San Diego and elsewhere, describe a unique screening strategy that compares genes associated with specific disease phenotypes (traits) with small molecules capable of intervening with disease-linked gene-expression events. The high-throughput process, capable of analyzing large numbers of genes and drugs simultaneously, emphasizes investigation of the entire genetic pathway of the disease against a large set of internal controls, rather than its limited phenotype or any particular molecular or cellular target.

Historically, drug discovery has been driven by phenotype- or target-based methodologies.

"For 50 years, the standard phenotype approach emphasized the final outcome without worrying about the mechanism," said Fu. "The process has produced some very good drugs, but researchers often didn't know exactly how or why the drug worked. Aspirin is an example. It's been around for more than a century, but we still don't understand the mechanism in great detail."

More recently, many drug designers have focused upon targeting particular components of a disease, such as a vital molecule or receptor involved in the pathogenic process. The approach has a stronger, more rational scientific basis, said Fu, but remains beset by two fundamental difficulties: "You can create a drug that disrupts a specific disease target, but you also run the risk of causing unforeseen, adverse side effects that might be worse than the disease. Second, there are many places inside of a cell that are essentially 'undruggable.' They are difficult, if not impossible, to intervene with."

The new approach attempts to avoid these problems by emphasizing investigation of the genetic pathways associated with disease processes and how they might be altered to produce a healthful benefit.

"The idea is to identify the genetic troublemakers associated with a disease and then find a way to contain them, not crush them," said Fu. "No gene was ever designed to cause disease. The goal is to find new drugs or ways to convert these genes or the affected cells back to a normal state. In many disease paradigms, you don't want to kill cells. You want to modify them to become healthy again."

While the idea of conducting multi-target screenings is not new, the technology to do so has been limited. Deep sequencing, said Fu, is ideally suited for the purpose.

To illustrate the efficacy of their high-throughput, gene-sequencing approach, Fu and colleagues applied the strategy to prostate cancer, which sometimes becomes resistant to standard antiandrogen hormone therapy. The scientists found that Peruvoside, a cardiac glycoside, strongly inhibits both androgen-sensitive and androgen-resistant prostate cancer cells without triggering severe side effects. Interestingly, a related cardiac glycoside called Digoxin has been used to treat congestive heart failure. A large epidemiological study found protective effects against prostate cancer on patients treated with Digoxin, compared to control cohorts.

"High-throughput genetic sequencing and screening allows you to look deeply into cells and analyze millions of molecules at the same time. The technology is constantly improving and getting cheaper. We think it's a promising strategy for drug discovery," said Fu.

Co-authors include Hairi Li, Dong Wang, Jinsong Qiu, Yu Zhou, UCSD Department of Cellular and Molecular Medicine; Hongyan Zhou and Sheng Ding, Gladstone Institute of Cardiovascular Disease; Xianqiang Li, Signosis, Inc.; and Michael G. Rosenfeld, Howard Hughes Medical Institute, UCSD Department of Medicine.

Funding for this research came, in part, from the Prostate Cancer Foundation and the National Human Genome Research Institute.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>