Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 24-karat Gold Key to Unlock the Immune System

27.03.2012
Developing a drug or vaccine requires a delicate balancing act with the immune system.
On one hand, medications need to escape detection by the immune system in order to perform their function. But vaccinations — de-activated versions of a disease or virus — need to do the reverse. They prompt the immune system to create protective antibodies. But scientists are still stumped by how the immune system recognizes different particles, and how it chooses whether or not to react against them.

Using nanoparticles made of pure gold, Dr. Dan Peer, head of Tel Aviv University's Laboratory of Nanomedicine at the Department of Cell Research and Immunology and the Center for Nanoscience and Nanotechnology, with a team including Drs. Meir Goldsmith and Dalit Landesman-Milo and in collaboration with Prof. Vincent Rotello and Dr. Daniel Moyano from the University of Massachusetts at Amherst, has developed a new method of introducing chemical residues into the immune system, allowing them to note the properties that incur the wrath of immune cells. Because the gold flecks are too small to be detected by the immune system, the immune system only responds when they are coated with different chemical residues.

This breakthrough could lead to an increased understanding of the properties of viruses and bacteria, better drug delivery systems, and more effective medications and vaccinations. Their study was published in the Journal of the American Chemical Society.

A tool for exploration

To begin probing the immune system, researchers used particles of gold, approximately two nanometers in diameter, and covered them with various chemical residues. Only when water-resistant residues were introduced did the immune system respond to their presence. That established a demonstrable link between hydrophobicity — the degree to which a molecule repels water — and the reaction of the immune system.

This idea has a basis in the normal functioning of the immune system, Dr. Peer explains. During cell death, the hydrophobic areas of the cell membrane become exposed. The immune system then realizes that damage has occurred and begins to alert neighboring cells.

The researchers discovered that the same principle held true for the chemicals added to the gold particles' surface. The more "water-hating" the particle is, the more actively the immune system will mobilize against it, he says.

Dr. Peer observes that this is only the first step in a long line of experiments. "We are using these gold particles to tackle the question of how the immune system recognizes different particles, which might include features such as geometry, charge, curvature, and so much more. Now that we know the tool works, we can build on it," he says.

Testing the "Danger Model"

Until now, scientists have developed theories about how the immune system functions, but have lacked the machinery to test these ideas. One such theory is the "Danger Model" by Prof. Polly Matzinger, which hypothesizes that cellular damage interacts with immune cells at the membrane level. Once they identify the foreign molecule as a "danger," the immune cells send signals throughout the immune system. Their initial experiment with hydrophobicity was designed to generate a toolbox for probing this theory, says Dr. Peer, whose investigations included both in vitro and in vivo experiments using mouse immune cells.

In the future, researchers will study various bacterial, viral, or damaged cells and to make the gold nanoparticles even more similar, thereby discovering which elements of dangerous particles are calling the body's immune system to arms. "We now have the capability of using nanomaterials to probe the immune system in a very accurate manner," says Dr. Peer, a breakthrough that could revolutionize the way we understand the immune system.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>