Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 24-karat Gold Key to Unlock the Immune System

27.03.2012
Developing a drug or vaccine requires a delicate balancing act with the immune system.
On one hand, medications need to escape detection by the immune system in order to perform their function. But vaccinations — de-activated versions of a disease or virus — need to do the reverse. They prompt the immune system to create protective antibodies. But scientists are still stumped by how the immune system recognizes different particles, and how it chooses whether or not to react against them.

Using nanoparticles made of pure gold, Dr. Dan Peer, head of Tel Aviv University's Laboratory of Nanomedicine at the Department of Cell Research and Immunology and the Center for Nanoscience and Nanotechnology, with a team including Drs. Meir Goldsmith and Dalit Landesman-Milo and in collaboration with Prof. Vincent Rotello and Dr. Daniel Moyano from the University of Massachusetts at Amherst, has developed a new method of introducing chemical residues into the immune system, allowing them to note the properties that incur the wrath of immune cells. Because the gold flecks are too small to be detected by the immune system, the immune system only responds when they are coated with different chemical residues.

This breakthrough could lead to an increased understanding of the properties of viruses and bacteria, better drug delivery systems, and more effective medications and vaccinations. Their study was published in the Journal of the American Chemical Society.

A tool for exploration

To begin probing the immune system, researchers used particles of gold, approximately two nanometers in diameter, and covered them with various chemical residues. Only when water-resistant residues were introduced did the immune system respond to their presence. That established a demonstrable link between hydrophobicity — the degree to which a molecule repels water — and the reaction of the immune system.

This idea has a basis in the normal functioning of the immune system, Dr. Peer explains. During cell death, the hydrophobic areas of the cell membrane become exposed. The immune system then realizes that damage has occurred and begins to alert neighboring cells.

The researchers discovered that the same principle held true for the chemicals added to the gold particles' surface. The more "water-hating" the particle is, the more actively the immune system will mobilize against it, he says.

Dr. Peer observes that this is only the first step in a long line of experiments. "We are using these gold particles to tackle the question of how the immune system recognizes different particles, which might include features such as geometry, charge, curvature, and so much more. Now that we know the tool works, we can build on it," he says.

Testing the "Danger Model"

Until now, scientists have developed theories about how the immune system functions, but have lacked the machinery to test these ideas. One such theory is the "Danger Model" by Prof. Polly Matzinger, which hypothesizes that cellular damage interacts with immune cells at the membrane level. Once they identify the foreign molecule as a "danger," the immune cells send signals throughout the immune system. Their initial experiment with hydrophobicity was designed to generate a toolbox for probing this theory, says Dr. Peer, whose investigations included both in vitro and in vivo experiments using mouse immune cells.

In the future, researchers will study various bacterial, viral, or damaged cells and to make the gold nanoparticles even more similar, thereby discovering which elements of dangerous particles are calling the body's immune system to arms. "We now have the capability of using nanomaterials to probe the immune system in a very accurate manner," says Dr. Peer, a breakthrough that could revolutionize the way we understand the immune system.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>