Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new 'idol' grabs the spotlight

15.06.2009
UCLA study discovers enzyme that controls 'bad' cholesterol

BACKGROUND: Low-density lipoprotein (LDL) is the so-called "bad cholesterol" often linked to medical problems like heart disease and clogged arteries. Cells in the liver produce a specific receptor that sticks to LDL and removes it from the blood, lowering cholesterol levels. Statin drugs also reduce LDL cholesterol levels by boosting cells' production of the receptor.

FINDINGS: Using a mouse model, UCLA scientists discovered a new mechanism that controls cells' production of LDL receptor. The team identified an enzyme called Idol that destroys the receptor, permitting more LDL cholesterol to circulate in the blood. In blocking Idol's activity, the researchers triggered cells to make more receptor and absorb more cholesterol from the body.

"We only know of three pathways that regulate the LDL receptor. The first two are already targeted by existing drugs," explained Dr. Peter Tontonoz, professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA and an investigator at the Howard Hughes Medical Institute. "Idol is the first mechanism discovered in several years that may lead to a new medication designed to control cholesterol levels."

IMPACT: The findings suggest that development of a drug that interferes with Idol's activity could influence cholesterol metabolism and lower levels of bad cholesterol. Doctors could prescribe the new medication in conjunction with statin drugs, which also cut cholesterol levels by targeting a different enzyme linked to the LDL receptor. This could benefit patients that cannot tolerate statin-related side effects.

AUTHORS: Tontonoz collaborated with Noam Zelcer, Cynthia Hong and Rima Boyadjian. The research was funded by the Howard Hughes Medical Institute and the National Heart, Lung and Blood Institute. Tontonoz and Zelcer have filed a patent related to the research findings.

JOURNAL: The research appears in the June 11 online edition of the journal Science.

GRAPHICS: Image showing how the LDL receptor changes appearance after contact with the Idol enzyme.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>