Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'B12 shot' for marine algae?

01.06.2012
Scientists find key protein for algae growth in the ocean

Scientists have revealed a key cog in the biochemical machinery that allows marine algae at the base of the oceanic food chain to thrive. They have discovered a previously unknown protein in algae that grabs an essential but scarce nutrient out of seawater, vitamin B12.

Many algae, as well as land-dwelling animals, including humans, require B12, but they cannot make it and must either acquire it from the environment or eat food that contains B12. Only certain single-celled bacteria and archaea have the ability to synthesize B12, which is also known as cobalamin.

Studying algal cultures and seawater samples from the Southern Ocean off Antarctica, a team of researchers from Woods Hole Oceanographic Institution (WHOI) and the J. Craig Venter Institute found a protein they described as "the B12 claw." Stationed at the algae's cell walls, the protein appears to operate by binding B12 in the ocean and helping to bring it into the cell. When B12 supplies are scarce, algae compensate by producing more of the protein, officially known as cobalamin acquisition protein 1, or CBA1. The team reported their findings May 31 in Proceedings of the National Academy of Sciences.

Discovery of CBA1 illuminates a small but vital piece of the fundamental metabolic machinery that allows the growth of marine algae, which have critical impacts on the marine food web and on Earth's climate. Via photosynthesis, marine algae draw huge amounts of carbon dioxide, a greenhouse gas, from the air, incorporating carbon into their bodies. The algae provide food that sets the food chain in motion. When they die or are eaten, some of the carbon ends up sinking to the ocean depths, where it cannot re-enter the atmosphere.

The discovery also opens the door for industrial or therapeutic applications. Since CBA1 is essential for marine algae growth, it could provide clues to how to promote growth of algae used to manufacture biofuels. Learning to manipulate the B12 biochemical pathways of beneficial or detrimental microbes could eventually lead to antibiotic or antifungal medicines.

To discover CBA1, Erin Bertrand, a graduate student in the MIT/WHOI Joint Program in Oceanography, and her advisor, WHOI biogeochemist Mak Saito used an approach now common in biomedical research but only recently applied to marine science: proteomics, the study of the proteins organisms make to function in their environment and respond to changing conditions. Among thousands of other proteins present in the algae, they identified the novel CBA1 protein when it increased in abundance when the algae were starved of vitamin B12. They then worked with colleagues at the Venter Institute to demonstrate CBA1's function and its presence in the oceans.

Bertrand, the study's lead author, earned a Ph.D. from the MIT/WHOI Joint Program in Oceanography in September 2011 and is now a postdoctoral scientist at the Venter Institute. In addition to Saito, co-authors of the papers are Andrew Allen, Christopher Dupont, Trina Norden-Krichmar, Jing Bai and Ruben Valas of the Venter Institute. The research was funded by the National Science Foundation and the Gordon and Betty Moore Foundation's Marine Microbial Initiative program.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment. For more information, please visit www.whoi.edu.

WHOI Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>