Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

5-limbed brittle stars move bilaterally, like people

10.05.2012
Brainless organisms choose a central arm and head that way

It appears that the brittle star, the humble, five-limbed dragnet of the seabed, moves very similarly to us.


The brittle star doesn’t turn as most animals do. It simply designates another of its five limbs as its new front and continues moving forward. Credit: Henry Astley/Brown University

In a series of first-time experiments, Brown University evolutionary biologist Henry Astley discovered that brittle stars, despite having no brain, move in a very coordinated fashion, choosing a central arm to chart direction and then designating other limbs to propel it along. Yet when the brittle star wants to change direction, it designates a new front, meaning that it chooses a new center arm and two other limbs to move. Brittle stars have come up with a mechanism to choose any of its five limbs to be central control, each capable of determining direction or pitching in to help it move.

The findings are published in the Journal of Experimental Biology.

Many animals, including humans, are bilaterally symmetrical — they can be divided into matching halves by drawing a line down the center. In contrast, brittle stars are pentaradially symmetrical: There are five different ways to carve them into matching halves. Whereas bilateral symmetrical organisms have perfected locomotion by designating a "head" that charts direction and then commands other body parts to follow suit, radial symmetrical animals have no such central directional control.

"What brittle stars have done is throw a wrench into the works," Astley said. "Even though their bodies are radially symmetrical, they can define a front and basically behave as if they're bilaterally symmetrical and reap the advantages of bilateral symmetry."

"For an animal that doesn't have a central brain, they're pretty remarkable," said Astley, the sole author of the paper.

Astley decided to study brittle stars after noticing that their appendages acted much like a snake's body, capable of coiling and unfurling from about any angle. Yet when watched brittle stars move about, he couldn't figure out how the individual arms were coordinating. "It was too confusing," said the fourth-year graduate student in the Department of Ecology and Evolutionary Biology. "There's no obvious front. There are five arms that are all moving, and I'm trying to keep track of all five while the (central body) disc was moving."

He decided to take a closer look, which, surprisingly, no other scientist had done. On a trip to Belize in January 2009 led by professor and department chair Mark Bertness, Astley plopped thick-spined brittle stars (Ophiocoma echinata) into an inflatable pool and filmed them. The animals were willing subjects. "They hate being exposed," Astley said, "so we put them in the middle of this sandy area and they'd move."

To move, brittle stars usually designate one arm as the front, depending on which direction it seeks to go. An arm on either side of the central arm then begins a rowing motion, much like a sea turtle, Astley said. The entire sequence of movement takes about two seconds. "They're pretty slow in general," Astley said.

To turn, the brittle star chooses a new center arm and the accompanying rowing arms to move it along. "If we as animals need to turn, we need to not only change the direction of movement, but we have to rotate our bodies," Astley explained. "With these guys, it's like, 'Now, that's the front. I don't have to rotate my body disk.'"

Oddly, the brittle star also chooses another type of locomotion — that to bilaterals would appear to be moving backward — about a quarter of the time, Astley documented. In this motion, the animal keeps the same front, but now designates the non-forward-rowing motion limbs to move it. The question, then, is why doesn't the brittle star define a new front and simply move forward? "There's clearly something that determines that," Astley said. "It could be the relative stimulus strength on the arms."

The research was funded by the private Bushnell Foundation.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>