Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


44-year-old mystery of how fleas jump resolved

Fleas jump by pushing off with the toes instead of knees

If you thought that we know everything about how the flea jumps, think again. In 1967, Henry Bennet-Clark discovered that fleas store the energy needed to catapult themselves into the air in an elastic pad made of resilin.

However, in the intervening years debate raged about exactly how fleas harness this explosive energy. Bennet-Clark and Miriam Rothschild came up with competing hypotheses, but neither had access to the high speed recording equipment that could resolve the problem. Turn the clock forward to Malcolm Burrows' Cambridge lab in 2010.

'We were always very puzzled by this debate because we'd read the papers and both Henry and Miriam put a lot of evidence for their hypotheses in place and their data were consistent with each other but we couldn't understand why the debate hadn't been settled,' says Burrows' postdoc, Gregory Sutton. He adds, 'We had a serendipitous set of hedgehog fleas show up so we figured we'd take a crack at it and try to answer the question'. Filming leaping fleas with a high-speed camera, Sutton and Burrows found that fleas push off with their toes (tarsus) and publish their discovery in The Journal of Experimental Biology at

'We were concerned about how difficult it would be to make the movies because we are used to filming locusts, which are much bigger than fleas,' admits Sutton, but he and Burrows realised that the fleas stayed perfectly still in the dark and only jumped when the lights went on. Focusing the camera on the stationary insects in low light, the duo successfully filmed 51 jumps from 10 animals; and this was when they got their first clue as to how the insects jump.

In the majority of the jumps, two parts of the flea's complicated leg – the tarsus (toe) and trochanter (knee)– were in contact with the ground for the push off, but in 10% of the jumps, only the tarsus (toe) touched the ground. Sutton explains that Rothschild had suggested that fleas push off with the trochanter (knee), but if 10% of the jumps didn't use the trochanter (knee) was it really necessary, or were the fleas using two mechanisms to get airborne?

Burrows and Sutton needed more evidence. Analysing the movies, the duo could see that the insects continued accelerating during take-off, even when the trochanter (knee) was no longer pushing down. And the insects that jumped without using the trochanter (knee) accelerated in exactly the same way as the insects that jumped using the trochanter (knee) and tarsus (toe). Also, when Burrows and Sutton looked at the flea's leg with scanning electron microscopy, the tibia (shin) and tarsus (toe) were equipped with gripping claws, but the trochanter (knee) was completely smooth, so it couldn't get a good grip to push off. Sutton and Burrows suspected that the insects push down through the tibia (shin) onto the tarsus (toe), as Bennet-Clark had suggested, but the team needed one more line of evidence to clinch the argument: a mathematical model that could reproduce the flea's trajectory.

'I looked at the simplest way to represent both models,' explains Sutton. Building Rothschild's model as a simple mass attached to a spring pushing down through the trochanter (knee) and Bennet-Clark's model as a spring transmitting the spring's force through a system of levers pushing on the tarsus (toe), Sutton generated the equations that could be used to calculate the insect's trajectory. Then he compared the results from his calculations with the movies to see how well they agreed.

Both models correctly predicted the insect's take-off velocity at 1.35m/s, but then the Rothschild model began to go wrong. It predicted that the insect's acceleration peaked at a colossal 22,000m/s2 (2200g), whereas the acceleration of the insects in the movies only peaked at 1500m/s2 (150g). However, Sutton's calculations based on the Bennet-Clark lever model worked perfectly, accurately predicting the insect's trajectory and acceleration pattern.

So Sutton and Burrows have finally settled the argument and resolved how fleas jump. The insects transmit the force from the spring in the thorax through leg segments acting as levers to push down on the tarsus (toe) and launch the 0.7mg animals at speeds as high as 1.9m/s.

This work was funded by the Human Frontiers Science Program and the Marshall Sherfield Commission.


REFERENCE: Sutton, G. P. and Burrows, M. (2011). Biomechanics of jumping in the flea. J. Exp. Biol. 214, 836-847.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT

Kathryn Knight | EurekAlert!
Further information:

Further reports about: 44-year-old mystery explosive energy flea jumps fleas

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>