Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D View of the Brain

12.01.2010
Viewing spatial distribution of biomolecules in substructures of mouse brains by mass spectrometry

A completely new view of the brains of mice has been achieved by a team headed by R. Graham Cooks at Purdue University (West Lafayette, Indiana, USA). By using mass-spectrometric techniques and imaging processes, they were able to produce three-dimensional images that reflect the spatial distribution of certain biomolecules within substructures of mouse brains, the scientists report in the journal Angewandte Chemie.

Mass spectrometry (MS) is a method by which molecules can be separated and identified by means of their mass. Combination with imaging techniques makes it possible to very specifically represent the two-dimensional distribution of molecules such as drugs, proteins, or lipids on the surface of a biological sample. Tissue samples need only be prepared following simplified standard histological protocols. For MS analysis, the molecules must then be carried off of the surface, ionized, and converted to the gas phase. For this, the researchers used desorption electrospray ionization (DESI), an ionization technique developed by Cooks’ team a few years ago. Says Cooks: “The particular advantage is that the samples can be examined in the open atmosphere, whereas previous MS imaging techniques required special surface treatment and ionization under vacuum.”

The researchers prepared series of thin sections of mouse brains and analyzed their lipid composition. Two different mass-spectrometric patterns were observed. These could be assigned to the gray and white masses in the brain, which differ in their lipid composition.

By using a set of the 2D data, the researchers constructed 3D images, which each map a specific primary lipid component. By overlaying these 3D data sets, they produced a model of the mouse brain in which anatomical details could be recognized. Other biomolecules could then also be charted and their 3D images also laid over the model, which makes it possible to determine in which areas of the brain the corresponding substances are primarily found. “We hope to use this to obtain a better understanding of the biochemical processes in the brain,” says Cooks. “In addition to the brain, we would also like to map other organs in this way.”

Please note the redesign of our press website at http://pressroom.angewandte.org: The latest story is now shown directly and there is an RSS feeds of our press releases as well as one of all articles and other news from Angewandte Chemie.
In his recent editorial entitled "Twitter, Facebook, Open Access", Angewandte Chemie's Editor-in-Chief Peter Gölitz comments on the latest trends in scientific publishing; see dx.doi.org/10.1002/anie.200906501

Author: R. Graham Cooks, Purdue University, West Lafayette (USA), http://www.chem.purdue.edu/people/faculty/faculty.asp?ItemID=1

Title: Three-Dimensional Vizualization of Mouse Brain by Lipid Analysis Using Ambient Ionization Mass Spectrometry

Angewandte Chemie International Edition, Permalink: http://dx.doi.org/10.1002/anie.200906283

R. Graham Cooks | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.purdue.edu/people/faculty/faculty.asp?ItemID=1
http://dx.doi.org/10.1002/anie.200906501

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>