Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D View of the Brain

12.01.2010
Viewing spatial distribution of biomolecules in substructures of mouse brains by mass spectrometry

A completely new view of the brains of mice has been achieved by a team headed by R. Graham Cooks at Purdue University (West Lafayette, Indiana, USA). By using mass-spectrometric techniques and imaging processes, they were able to produce three-dimensional images that reflect the spatial distribution of certain biomolecules within substructures of mouse brains, the scientists report in the journal Angewandte Chemie.

Mass spectrometry (MS) is a method by which molecules can be separated and identified by means of their mass. Combination with imaging techniques makes it possible to very specifically represent the two-dimensional distribution of molecules such as drugs, proteins, or lipids on the surface of a biological sample. Tissue samples need only be prepared following simplified standard histological protocols. For MS analysis, the molecules must then be carried off of the surface, ionized, and converted to the gas phase. For this, the researchers used desorption electrospray ionization (DESI), an ionization technique developed by Cooks’ team a few years ago. Says Cooks: “The particular advantage is that the samples can be examined in the open atmosphere, whereas previous MS imaging techniques required special surface treatment and ionization under vacuum.”

The researchers prepared series of thin sections of mouse brains and analyzed their lipid composition. Two different mass-spectrometric patterns were observed. These could be assigned to the gray and white masses in the brain, which differ in their lipid composition.

By using a set of the 2D data, the researchers constructed 3D images, which each map a specific primary lipid component. By overlaying these 3D data sets, they produced a model of the mouse brain in which anatomical details could be recognized. Other biomolecules could then also be charted and their 3D images also laid over the model, which makes it possible to determine in which areas of the brain the corresponding substances are primarily found. “We hope to use this to obtain a better understanding of the biochemical processes in the brain,” says Cooks. “In addition to the brain, we would also like to map other organs in this way.”

Please note the redesign of our press website at http://pressroom.angewandte.org: The latest story is now shown directly and there is an RSS feeds of our press releases as well as one of all articles and other news from Angewandte Chemie.
In his recent editorial entitled "Twitter, Facebook, Open Access", Angewandte Chemie's Editor-in-Chief Peter Gölitz comments on the latest trends in scientific publishing; see dx.doi.org/10.1002/anie.200906501

Author: R. Graham Cooks, Purdue University, West Lafayette (USA), http://www.chem.purdue.edu/people/faculty/faculty.asp?ItemID=1

Title: Three-Dimensional Vizualization of Mouse Brain by Lipid Analysis Using Ambient Ionization Mass Spectrometry

Angewandte Chemie International Edition, Permalink: http://dx.doi.org/10.1002/anie.200906283

R. Graham Cooks | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.purdue.edu/people/faculty/faculty.asp?ItemID=1
http://dx.doi.org/10.1002/anie.200906501

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>