Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D molecular syringes - Scientists solve structure of infection tool used by Yersinia

31.07.2013
Abdominal pain, fever, diarrhoea – these symptoms could point to an infection with the bacterium Yersinia.

The bacterium’s pathogenic potential is based on a syringe-like injection apparatus called injectisome. For the first time, an international team of researchers including scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, has unraveled this molecular syringe’s spatial conformation.


Electron microscope image of a bacterial cell: injection apparatuses (shown in red) stick out from the cell and extend across the cell wall (shown here in yellow and blue). University of Basel / Mikhail Kudryashev

The researchers were able to demonstrate that the length of Yersinia’s injectisome’s basal body, which crosses the bacterial cell wall, is adjustable – very likely an adaptation to physical stress.

The rod-shaped bacterium Yersinia enterocolitica, which is transmitted through contaminated food, causes gastrointestinal diseases. In Germany alone, several thousand cases are reported annually. Yersinia uses a rather sophisticated tool – its injection apparatus – to infect humans. Not only does the apparatus look like a syringe, it actually serves a similar purpose.

A molecular “needle”, which sticks out from the bacterium’s surface, extends across the bacterial membranes to the host cell. It is through this needle that the bacterium “injects” substances that facilitate infection of the host. Now, for the first time, an interdisciplinary team of HZI scientists together with their colleagues at the Biozentrum of the University of Basel and at the Ecole Polytechnique Fédérale de Lausanne in Switzerland, has presented the structure of Yersinia enterocolitica‘s injectisome in high-resolution and 3D. They published their results in the digital scientific magazine eLife.

Their innovative approach has yielded surprising results. Previous studies had been concerned with isolating the molecular syringe from the bacterium and studying it under the electron microscope. “We, however, actually studied the injectisome in situ, in other words, on the bacterial surface, right where it normally occurs,” explains Prof. Henning Stahlberg, University of Basel. To this end, the researchers cooled the bacteria to minus 193 degrees Celsius and used cryo-electron microscopy to take pictures of the syringe from various angles. They then computed a spatial structure from a set of two-dimensional images – a highly effective method for examining large molecular complexes. The syringe, which consists of some 30 different proteins, definitely falls into that category.

When comparing over 2000 single syringes from over 300 bacteria, the researchers made a surprising discovery: “There is a range of different lengths of each injection apparatus’ base – in some cases, it’s on the order of ten nanometers, or ten millionth of a millimeter. It can be stretched or compressed – just like a spring,” explains Dr. Stefan Schmelz of the HZI, one of the study’s first authors. As much as we consider such dimensions to be miniscule – to a bacterium, which itself is but a hundred times that size, they are substantial. “Bacteria are exposed to considerable forces, be it during contact with other cells or upon changes in environmental salinity,” explains Prof. Dirk Heinz, the HZI’s scientific director and former head of the HZI Department of Molecular Structural Biology. “If the injectisomes were rigidly constructed, bacteria would most likely be unable to resist these forces. Their cell walls would simply rupture.”

Insights into the structure of Yersinia’s attack tool offer clues as to ways in which the molecular syringe may be therapeutically inhibited. Without this apparatus, the bacteria are practically harmless. “Also other pathogenic bacteria make use of this principle during infection, for example Salmonella that cause food poisoning,” confirms Dr. Mikhail Kudryashev, another of the study’s primary authors and a researcher at the University of Basel. The team was already able to document this same flexibility in Shigella, the causative agent behind bacillary dysentery. The “molecular building kit,” as Schmelz calls it, is highly similar, suggesting that insights from this current study can potentially also be applied to other pathogenic bacteria.

Original publication:

Mikhail Kudryashev*, Marco Stenta*, Stefan Schmelz*, Marlise Amstutz*, Ulrich Wiesand*, Daniel Castaño-Díez, Matteo T Degiacomi, Stefan Münnich, Christopher KE Bleck, Julia Kowal, Andreas Diepold, Dirk W Heinz, Matteo Dal Peraro, Guy R Cornelis, Henning Stahlberg
*These authors have contributed equally to the study.
In situ structural analysis of the Yersinia enterocolitica injectisome
eLife, 2013, DOI: http://dx.doi.org/10.7554/elife.00792
The Department „Molecular Structural Biology” investigates the spatial structure and function of individual molecules. They utilize modern technologies such as x-ray structure analysis, nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry. Their focus is on both biomacromolecules as well as low molecular natural substances.
The Helmholtz Centre for Infection Research (HZI)
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/3d_molecular_syringes/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>