Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D molecular syringes - Scientists solve structure of infection tool used by Yersinia

31.07.2013
Abdominal pain, fever, diarrhoea – these symptoms could point to an infection with the bacterium Yersinia.

The bacterium’s pathogenic potential is based on a syringe-like injection apparatus called injectisome. For the first time, an international team of researchers including scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, has unraveled this molecular syringe’s spatial conformation.


Electron microscope image of a bacterial cell: injection apparatuses (shown in red) stick out from the cell and extend across the cell wall (shown here in yellow and blue). University of Basel / Mikhail Kudryashev

The researchers were able to demonstrate that the length of Yersinia’s injectisome’s basal body, which crosses the bacterial cell wall, is adjustable – very likely an adaptation to physical stress.

The rod-shaped bacterium Yersinia enterocolitica, which is transmitted through contaminated food, causes gastrointestinal diseases. In Germany alone, several thousand cases are reported annually. Yersinia uses a rather sophisticated tool – its injection apparatus – to infect humans. Not only does the apparatus look like a syringe, it actually serves a similar purpose.

A molecular “needle”, which sticks out from the bacterium’s surface, extends across the bacterial membranes to the host cell. It is through this needle that the bacterium “injects” substances that facilitate infection of the host. Now, for the first time, an interdisciplinary team of HZI scientists together with their colleagues at the Biozentrum of the University of Basel and at the Ecole Polytechnique Fédérale de Lausanne in Switzerland, has presented the structure of Yersinia enterocolitica‘s injectisome in high-resolution and 3D. They published their results in the digital scientific magazine eLife.

Their innovative approach has yielded surprising results. Previous studies had been concerned with isolating the molecular syringe from the bacterium and studying it under the electron microscope. “We, however, actually studied the injectisome in situ, in other words, on the bacterial surface, right where it normally occurs,” explains Prof. Henning Stahlberg, University of Basel. To this end, the researchers cooled the bacteria to minus 193 degrees Celsius and used cryo-electron microscopy to take pictures of the syringe from various angles. They then computed a spatial structure from a set of two-dimensional images – a highly effective method for examining large molecular complexes. The syringe, which consists of some 30 different proteins, definitely falls into that category.

When comparing over 2000 single syringes from over 300 bacteria, the researchers made a surprising discovery: “There is a range of different lengths of each injection apparatus’ base – in some cases, it’s on the order of ten nanometers, or ten millionth of a millimeter. It can be stretched or compressed – just like a spring,” explains Dr. Stefan Schmelz of the HZI, one of the study’s first authors. As much as we consider such dimensions to be miniscule – to a bacterium, which itself is but a hundred times that size, they are substantial. “Bacteria are exposed to considerable forces, be it during contact with other cells or upon changes in environmental salinity,” explains Prof. Dirk Heinz, the HZI’s scientific director and former head of the HZI Department of Molecular Structural Biology. “If the injectisomes were rigidly constructed, bacteria would most likely be unable to resist these forces. Their cell walls would simply rupture.”

Insights into the structure of Yersinia’s attack tool offer clues as to ways in which the molecular syringe may be therapeutically inhibited. Without this apparatus, the bacteria are practically harmless. “Also other pathogenic bacteria make use of this principle during infection, for example Salmonella that cause food poisoning,” confirms Dr. Mikhail Kudryashev, another of the study’s primary authors and a researcher at the University of Basel. The team was already able to document this same flexibility in Shigella, the causative agent behind bacillary dysentery. The “molecular building kit,” as Schmelz calls it, is highly similar, suggesting that insights from this current study can potentially also be applied to other pathogenic bacteria.

Original publication:

Mikhail Kudryashev*, Marco Stenta*, Stefan Schmelz*, Marlise Amstutz*, Ulrich Wiesand*, Daniel Castaño-Díez, Matteo T Degiacomi, Stefan Münnich, Christopher KE Bleck, Julia Kowal, Andreas Diepold, Dirk W Heinz, Matteo Dal Peraro, Guy R Cornelis, Henning Stahlberg
*These authors have contributed equally to the study.
In situ structural analysis of the Yersinia enterocolitica injectisome
eLife, 2013, DOI: http://dx.doi.org/10.7554/elife.00792
The Department „Molecular Structural Biology” investigates the spatial structure and function of individual molecules. They utilize modern technologies such as x-ray structure analysis, nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry. Their focus is on both biomacromolecules as well as low molecular natural substances.
The Helmholtz Centre for Infection Research (HZI)
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/3d_molecular_syringes/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>