Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D scaffold provides clean, biodegradable structure for stem cell growth

03.02.2010
Medical researchers were shocked to discover that virtually all human embryonic stem cell lines being used in 2005 were contaminated. Animal byproducts used to line Petri dishes had left traces on the human cells. If those cells had been implanted in a human body they likely would have been rejected by the patient's immune system.

Even today, with new stem cell lines approved for use in medical research, there remains a risk that these cells will be contaminated in the same way. Most research labs still use animal-based "feeder layers" because it remains the cheapest and most reliable way to get stem cells to multiply.

Materials scientists at the University of Washington have now created an alternative. They built a three-dimensional scaffold out of a natural material that mimics the binding sites for stem cells, allowing the cells to reproduce on a clean, biodegradable structure. Results published in the journal Biomaterials show that human embryonic stem cells grow and multiply readily on the structure.

"The major challenge for stem cell therapy today is it's very difficult to make a lot of them with high purity," said lead author Miqin Zhang, a UW professor of materials science and engineering. "So far it seems like this material is very good for stem cell renewal."

Medical researchers hope to someday use stem cells to grow new tissues and organs. Key to the research is the fact that new cells maintain the property that holds medical promise -- the ability to differentiate into any of the more than 220 cell types in the adult human body.

Growing the cells in three dimensions better resembles conditions in the human body. It also allows mass production, which will be needed for any clinical applications.

"Three-dimensional scaffolds are an active area of research," said Carol Ware, a UW professor of comparative medicine and expert on stem cells. "They are not commonly used yet, but will be important to transition embryonic stem cells to the clinic. To date, nobody has found a perfect matrix."

Zhang's cylindrical scaffold is made of chitosan, found in the shells of crustaceans, and alginate, a gelatinous substance found in algae. Chitosan and alginate have a structure similar to the matrix that surrounds cells in the body, to which cells can attach. Different processing techniques can make the scaffold out of interconnected pores of almost any size, Zhang said.

Researchers first seeded the scaffold with 500,000 embryonic stem cells, and after 21 days the scaffold was completely saturated. The cells infiltrated the structure, Zhang added, unlike other materials where cells often grow only on the surface.

"This scaffold mimics the extracellular matrix at the atomic level, and so the cells are able to grow in this environment," Zhang said.

To retrieve the cells, researchers immersed the scaffold in a mild solution. The structure is biodegradable and so dissolved to release the stem cells. One also could implant the stem cell-covered scaffold directly into the body.

Analysis of gene activity and testing in the lab and in mice showed that the new stem cells retained the same properties as their predecessors.

Other researcher groups are also looking for alternatives to feeder layers. The leading contenders are scaffolds coated with custom proteins designed to mimic the key properties of the animal cells in the feeder layer. Such products are expensive and difficult to produce in a consistent manner, Zhang said. The proteins also get used up in a few days and have to be replaced, making them costly and time-consuming for everyday use.

"Our scaffold is made of natural materials that are already FDA-approved for food and biomedical applications. Also, these materials are unlimited, and the cost is cheap," she said.

Zhang's group is now working to build a scaffold larger than the current dime-sized prototype, and is collaborating with the UW's Institute for Stem Cells and Regenerative Medicine and UW School of Medicine to try growing different types of stem cells, including those from umbilical cord blood and bone marrow, in the material. They will try to get the resulting cells to differentiate into bone, neuron, muscle and liver cells.

Co-authors are Zhensheng Li and Matthew Leung, UW doctoral students in materials science and engineering; Dr. Richard Hopper, an associate professor at the UW School of Medicine; and Dr. Richard Ellenbogen, professor and chair of neurological surgery at the UW School of Medicine.

For more information, contact Zhang at 206-616-9356 or mzhang@uw.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

Further reports about: 3-D image cell type embryonic stem embryonic stem cell human body stem cells

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>