Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D scaffold provides clean, biodegradable structure for stem cell growth

03.02.2010
Medical researchers were shocked to discover that virtually all human embryonic stem cell lines being used in 2005 were contaminated. Animal byproducts used to line Petri dishes had left traces on the human cells. If those cells had been implanted in a human body they likely would have been rejected by the patient's immune system.

Even today, with new stem cell lines approved for use in medical research, there remains a risk that these cells will be contaminated in the same way. Most research labs still use animal-based "feeder layers" because it remains the cheapest and most reliable way to get stem cells to multiply.

Materials scientists at the University of Washington have now created an alternative. They built a three-dimensional scaffold out of a natural material that mimics the binding sites for stem cells, allowing the cells to reproduce on a clean, biodegradable structure. Results published in the journal Biomaterials show that human embryonic stem cells grow and multiply readily on the structure.

"The major challenge for stem cell therapy today is it's very difficult to make a lot of them with high purity," said lead author Miqin Zhang, a UW professor of materials science and engineering. "So far it seems like this material is very good for stem cell renewal."

Medical researchers hope to someday use stem cells to grow new tissues and organs. Key to the research is the fact that new cells maintain the property that holds medical promise -- the ability to differentiate into any of the more than 220 cell types in the adult human body.

Growing the cells in three dimensions better resembles conditions in the human body. It also allows mass production, which will be needed for any clinical applications.

"Three-dimensional scaffolds are an active area of research," said Carol Ware, a UW professor of comparative medicine and expert on stem cells. "They are not commonly used yet, but will be important to transition embryonic stem cells to the clinic. To date, nobody has found a perfect matrix."

Zhang's cylindrical scaffold is made of chitosan, found in the shells of crustaceans, and alginate, a gelatinous substance found in algae. Chitosan and alginate have a structure similar to the matrix that surrounds cells in the body, to which cells can attach. Different processing techniques can make the scaffold out of interconnected pores of almost any size, Zhang said.

Researchers first seeded the scaffold with 500,000 embryonic stem cells, and after 21 days the scaffold was completely saturated. The cells infiltrated the structure, Zhang added, unlike other materials where cells often grow only on the surface.

"This scaffold mimics the extracellular matrix at the atomic level, and so the cells are able to grow in this environment," Zhang said.

To retrieve the cells, researchers immersed the scaffold in a mild solution. The structure is biodegradable and so dissolved to release the stem cells. One also could implant the stem cell-covered scaffold directly into the body.

Analysis of gene activity and testing in the lab and in mice showed that the new stem cells retained the same properties as their predecessors.

Other researcher groups are also looking for alternatives to feeder layers. The leading contenders are scaffolds coated with custom proteins designed to mimic the key properties of the animal cells in the feeder layer. Such products are expensive and difficult to produce in a consistent manner, Zhang said. The proteins also get used up in a few days and have to be replaced, making them costly and time-consuming for everyday use.

"Our scaffold is made of natural materials that are already FDA-approved for food and biomedical applications. Also, these materials are unlimited, and the cost is cheap," she said.

Zhang's group is now working to build a scaffold larger than the current dime-sized prototype, and is collaborating with the UW's Institute for Stem Cells and Regenerative Medicine and UW School of Medicine to try growing different types of stem cells, including those from umbilical cord blood and bone marrow, in the material. They will try to get the resulting cells to differentiate into bone, neuron, muscle and liver cells.

Co-authors are Zhensheng Li and Matthew Leung, UW doctoral students in materials science and engineering; Dr. Richard Hopper, an associate professor at the UW School of Medicine; and Dr. Richard Ellenbogen, professor and chair of neurological surgery at the UW School of Medicine.

For more information, contact Zhang at 206-616-9356 or mzhang@uw.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

Further reports about: 3-D image cell type embryonic stem embryonic stem cell human body stem cells

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>