Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D microgels 'on-demand' offer new potential for cell research

27.02.2014

Stars, diamonds, circles.

Rather than your average bowl of Lucky Charms, these are three-dimensional cell cultures generated by an exciting new digital microfluidics platform, the results of which have been published in Nature Communications this week by researchers at the University of Toronto. The tool, which can be used to study cells in cost-efficient, three-dimensional microgels, may hold the key to personalized medicine applications in the future.

"We already know that the microenvironment can greatly influence cell fate," says Irwin A. Eydelnant, recent doctoral graduate from IBBME and first author of the publication. "The important part of this study is that we've developed a tool that will allow us to investigate the sensitivity of cells to their 3D environment."

"Everyone wants to do three-dimensional (3D) cell culture," explains Aaron Wheeler, Professor and Canada Research Chair in Bioanalytical Chemistry at the Institute of Biomaterials & Biomedical Engineering (IBBME), the Department of Chemistry, and the Donnelly Centre for Cellular and Biomolecular Research (DCCBR) at the University of Toronto. "Cells grown in this manner share much more in common with living systems than the standard two-dimensional (2D) cell culture format," says Wheeler, corresponding author of the study.

But more naturalistic, 3D cell cultures are a challenge to grow. "The reagents are expensive, the materials are inconvenient for automation, and 3D matrices break down upon repeated handling," explains Wheeler, who was named an Inventor of the Year by the University of Toronto in 2012.

Eydelnant was able to address these difficulties by adapting a digital microfluidics platform first created in the Wheeler lab. Cells, caught up in a hydrogel material, are gently flowed across a small field that, on a screen, looks much like a tiny chessboard. The cells are strategically manipulated by a small electric field across a cutout shape on the top plate of the system, made from indium in oxide, and become fixed.

"When we grew kidney cells in these microgels, the cultures formed hollow sphere structures resembling primitive kidneys within four or five days," Eydelnant claims.

The tool allows a great deal of flexibility in terms of the number of different kinds of cells that can be incorporated into the shapes, as well as the shapes and size of the microenvironments: whimsical, like the stars, diamond and circles of Lucky Charms, or designed to mimic living 3D niches, offering researchers a glimpse into how these factors all affect cell fate decisions.

What's more, according to Eydelnant, the platform permits researchers to run, "32 experiments at the same time, automatically, and all on something the size of a credit card."

"[This new] system allows for hands-free assembly of sub-microlitre, three-dimensional microgels. Each gel is individually addressable, fluid exchange is gentler than macro-scale alternatives, and reagent use is reduced more than 100-fold," Wheeler says.

"We believe that this new tool will make 3D cell culture a more attractive and accessible format for cell biology research," he adds.

Although the researchers can foresee numerous possible applications for this platform, the team is "particularly excited" about its potential for personalized medicine.

Wheeler argues, "We may be able to collect small tissue samples from patients, distribute them into 3D gels on digital microfluidic devices, and screen for conditions to identify individually tailored therapies. This is in the 'dream' stages for now, but we think the methods described here will be useful for these types of applications in the future."

Erin Vollick | EurekAlert!
Further information:
http://www.utoronto.ca

Further reports about: Biomedical Biomolecular Cells Cellular Engineering Inventor culture microfluidics

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>