Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D map of blood vessels in cerebral cortex holds suprises

10.06.2013
Blood vessels within a sensory area of the mammalian brain loop and connect in unexpected ways, a new map has revealed.

The study, published June 9 in the early online edition of Nature Neuroscience, describes vascular architecture within a well-known region of the cerebral cortex and explores what that structure means for functional imaging of the brain and the onset of a kind of dementia.

David Kleinfeld, professor of physics and neurobiology at the University of California, San Diego, and colleagues mapped blood vessels in an area of the mouse brain that receives sensory signals from the whiskers.

The organization of neural cells in this brain region is well-understood, as was a pattern of blood vessels that plunge from the surface of the brain and return from the depths, but the network in between was uncharted. Yet these tiny arterioles and venules deliver oxygen and nutrients to energy-hungry brain cells and carry away wastes.

The team traced this fine network by filling the vessels with a fluorescent gel. Then, using an automated system, developed by co-author Philbert Tsai, that removes thin layers of tissue with a laser while capturing a series of images to reconstructed the three-dimensional network of tiny vessels.

The project focused on a region of the cerebral cortex in which the nerve cells are so well known that they can be traced to individual whiskers. These neurons cluster in "barrels," one per whisker, a pattern of organization seen in other sensory areas as well.

The scientists expected each whisker barrel to match up with its own blood supply, but that was not the case. The blood vessels don't line up with the functional structure of the neurons they feed.

"This was a surprise, because the blood vessels develop in tandem with neural tissue," Kleinfeld said. Instead, microvessels beneath the surface loop and connect in patterns that don't obviously correspond to the barrels.

To search for patterns, they turned to a branch of mathematics called graph theory, which describes systems as interconnected nodes. Using this approach, no hidden subunits emerged, demonstrating that the mesh indeed forms a continous network they call the "angiome."

The vascular maps traced in this study raise a question of what we're actually seeing in a widely used kind of brain imaging called functional MRI, which in one form measures brain activity by recording changes in oxygen levels in the blood. The idea is that activity will locally deplete oxygen. So they wiggled whiskers on individual mice and found that optical signals associated with depleted oxygen centered on the barrels, where electrical recordings confirmed neural activity. Thus brain mapping does not depend on a modular arrangement of blood vessels.

The researchers also went a step further to calculate patterns of blood flow based on the diameters and connections of the vessels and asked how this would change if a feeder arteriole were blocked. The map allowed them to identify "perfusion domains," which predict the volumes of lesions that result when a clot occludes a vessel. Critically, they were able to build a physical model of how these lesions form, as may occur in cases of human dementia.

Additional co-authors include Pablo Blinder, John Kaufhold, Per Knutsen and Harry Suhl. This work was funded by the National Institutes of Health, including a Director's Pioneer Award to Kleinfeld.

David Kleinfeld | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>