Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D map of blood vessels in cerebral cortex holds suprises

10.06.2013
Blood vessels within a sensory area of the mammalian brain loop and connect in unexpected ways, a new map has revealed.

The study, published June 9 in the early online edition of Nature Neuroscience, describes vascular architecture within a well-known region of the cerebral cortex and explores what that structure means for functional imaging of the brain and the onset of a kind of dementia.

David Kleinfeld, professor of physics and neurobiology at the University of California, San Diego, and colleagues mapped blood vessels in an area of the mouse brain that receives sensory signals from the whiskers.

The organization of neural cells in this brain region is well-understood, as was a pattern of blood vessels that plunge from the surface of the brain and return from the depths, but the network in between was uncharted. Yet these tiny arterioles and venules deliver oxygen and nutrients to energy-hungry brain cells and carry away wastes.

The team traced this fine network by filling the vessels with a fluorescent gel. Then, using an automated system, developed by co-author Philbert Tsai, that removes thin layers of tissue with a laser while capturing a series of images to reconstructed the three-dimensional network of tiny vessels.

The project focused on a region of the cerebral cortex in which the nerve cells are so well known that they can be traced to individual whiskers. These neurons cluster in "barrels," one per whisker, a pattern of organization seen in other sensory areas as well.

The scientists expected each whisker barrel to match up with its own blood supply, but that was not the case. The blood vessels don't line up with the functional structure of the neurons they feed.

"This was a surprise, because the blood vessels develop in tandem with neural tissue," Kleinfeld said. Instead, microvessels beneath the surface loop and connect in patterns that don't obviously correspond to the barrels.

To search for patterns, they turned to a branch of mathematics called graph theory, which describes systems as interconnected nodes. Using this approach, no hidden subunits emerged, demonstrating that the mesh indeed forms a continous network they call the "angiome."

The vascular maps traced in this study raise a question of what we're actually seeing in a widely used kind of brain imaging called functional MRI, which in one form measures brain activity by recording changes in oxygen levels in the blood. The idea is that activity will locally deplete oxygen. So they wiggled whiskers on individual mice and found that optical signals associated with depleted oxygen centered on the barrels, where electrical recordings confirmed neural activity. Thus brain mapping does not depend on a modular arrangement of blood vessels.

The researchers also went a step further to calculate patterns of blood flow based on the diameters and connections of the vessels and asked how this would change if a feeder arteriole were blocked. The map allowed them to identify "perfusion domains," which predict the volumes of lesions that result when a clot occludes a vessel. Critically, they were able to build a physical model of how these lesions form, as may occur in cases of human dementia.

Additional co-authors include Pablo Blinder, John Kaufhold, Per Knutsen and Harry Suhl. This work was funded by the National Institutes of Health, including a Director's Pioneer Award to Kleinfeld.

David Kleinfeld | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>