Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3 in 1: team finds the gene responsible for three forms of childhood neurodegenerative diseases

13.09.2011
A Montreal-led international team has identified the mutated gene responsible for three forms of leukodystrophies, a group of childhood-onset neurodegenerative disorders.

Mutations in this gene were identified in individuals from around the world but one mutation occurs more frequently in French-Canadian patients from Quebec.

Published in the September issue of the American Journal of Human Genetics and selected for the Editors' Corner of the journal, the findings are crucial to the development of diagnostic tests and genetic counseling for families, and provide insights into a new mechanism for these disorders of the brain.

Currently, there are no cures for leukodystrophies which are a group of inherited neurodegenerative disorders affecting preferentially the white matter of the brain. White matter serves to cover nerve cell projections called axons, allowing nerve impulses to be correctly transmitted. Many children with a leukodystrophy appear normal at birth with very little or no indication that they have the disorder. Symptoms such as walking difficulties, falls or tremor gradually appear.

As they grow older they lose mobility, speech and develop swallowing difficulties, and as teenagers are often wheelchair bound or bed ridden. The majority of patients die prematurely. The evolution and symptoms vary according to the specific type of leukodystrophy. It is estimated that at least 30-40% of individuals with a leukodystrophy remain without a precise diagnosis despite extensive investigations.

The study identified the first mutations in the POLR3A gene in families from Quebec. Mutations in the same gene were found in patients from the USA, Syria, Guatemala, France, and other European countries. The international team was led by Drs Bernard Brais and Geneviève Bernard and included scientists from Montreal, Washington D.C., Dallas, Beirut, Paris, Clermont-Ferrand, and Bordeaux. The group was able to demonstrate that mutations in the same POLR3A gene localized on chromosome 10 were responsible for three clinically different forms of leukodystrophies: Tremor-Ataxia with Central Hypomyelination (TACH) first described in Quebec cases, Leukodystrophy with Oligodontia (LO), and 4H syndrome or Hypomyelination, Hypodontia and Hypogonadotropic Hypogonadism syndrome.

“We identified many different mutations in the POLR3A gene which codes for a key subunit of RNA Polymerase III (Pol III), a highly conserved protein complex with a crucial role in gene expression, and many other important pathways,” explains Dr. Brais. “This finding is surprising considering the fundamental role of Pol III. It is also an encouraging discovery because if we can identify which targets of Pol III, when decreased, lead to the disease, we could develop therapeutic strategies to replace them.” The research was conducted in the laboratory of Dr Brais at the Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM). Dr. Brais is now a clinician-scientist at The Montreal Neurological Institute and Hospital, The Neuro at McGill University, and Dr. Geneviève Bernard has recently been recruited as a clinician-researcher at The Montreal Children’s Hospital, McGill University Health Centre.

This research was funded by the Fondation sur les Leucodystrophies, created by a Quebec couple whose child is affected, in order to find a cure for this orphan disease (www.leucofondation.com). Support was also provided by l’Association Européenne contre les Leucodystrophies (http://www.ela-asso.com). The shared mission of both foundations is to increase public awareness of the disease, raise much needed funds for research and provide families with help and support. Support was also provided by the Réseau de médicine génétique appliquée du Québec (RMGA) and by the Fonds de recherche en santé du Québec (FRSQ).

The Montreal Neurological Institute and Hospital:

The Montreal Neurological Institute and Hospital — The Neuro, is a unique academic medical centre dedicated to neuroscience. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. The Montreal Neurological Institute was named as one of the Seven Centres of Excellence in Budget 2007, which provided the MNI with $15 million in funding to support its research and commercialization activities related to neurological disease and neuroscience.

Anita Kar | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>