Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

200,000 rice mutants available worldwide for scientific investigation

06.03.2009
Scientists across the world are building an extensive repository of genetically modified rice plants in the hope of understanding the function of the approximately 57,000 genes that make up the genome of Oryza sativa.

The International Rice Functional Genomics Consortium recently announced the public availability of more than 200,000 rice mutant lines, which represent mutations in about half of the known functional genes mapped for rice to date. *

Researchers have estimated the number of different rice mutants needed to have a mutant for every gene as somewhere between 180,698 and 460,000. Two hundred thousand rice mutants are now available and have been mapped by the insertion of what are known as flanking sequence tags – small pieces of DNA or molecular tags that integrate into the rice genome. This approach is useful because it allows scientists to link a physical location on the genome to a specific gene and its visible feature or phenotype.

Arjun Krishnan, first author on the paper and a graduate student in Andy Pereira's laboratory at the Virginia Bioinformatics Institute, stated: "Bioinformatics is making it possible to visualize the vast amounts of sequence information available to researchers. The resources described in this paper, which are the combined output of many leading international rice research laboratories, mean that researchers can see and explore on their computers the precise positions of mutations in the rice genome sequence, for each rice mutant plant. About 50 percent of the protein-coding genes have knockout mutations, which probably abolish their expression and can provide valuable information on the genes by virtue of their loss of function. This is a significant milestone for the project and the availability of these rice plants represents a powerful resource for the rice genomics community."

More than 2 million rice mutants were generated in this project and the diversity of the available plants suits many of the experimental objectives of researchers looking at rice and other commercially important grasses. Mapping of the remaining genes from this population will be required to complete the resource. Many of them will be smaller genes less amenable to mutation that will pose significant challenges for researchers as they continue their work.

Dr. Andy Pereira, Professor at the Virginia Bioinformatics Institute, stated: "The Oryza sativa genome was sequenced in 2002 and researchers have come a long way since. Advances in technologies such as high-throughput sequencing and RNA interference gene silencing methods should help to accelerate the process of identifying the functions of the remaining genes in the rice genome." He added: "The availability of the rice mutant resource is already helping researchers in their quest to gain insights into the biology of this commercially important crop. These efforts are critical to understand gene function and, ultimately, the many biological processes that take place in rice and other grasses, including maize and wheat, which collectively produce our staple food."

* Krishnan A, Guiderdoni E, An G, Hsing YI, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A (2009) Plant Physiology 149(1): 165-170

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>