Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 vortex trails with 1 stroke

26.02.2013
UC Riverside research shows hovering hummingbirds generate two trails of vortices under their wings, challenging 1-vortex consensus

As of today, the Wikipedia entry for the hummingbird explains that the bird's flight generates in its wake a single trail of vortices that helps the bird hover.

But after conducting experiments with hummingbirds in the lab, researchers at the University of California, Riverside propose that the hovering hummingbird instead produces two trails of vortices — one under each wing per stroke — that help generate the aerodynamic forces required for the bird to power and control its flight.

The results of the study could find wide application in aerospace technology and the development of unmanned vehicles for medical surveillance after natural disasters.

The researchers used high-speed image sequences — 500 frames per second — of hummingbirds hover-feeding within a white plume (emitted by the heating of dry ice) to study the vortex wake from multiple perspectives. They also used particle image velocimetry (PIV), a flow-measuring method used in fluid mechanics, to quantitatively analyze the flow around the hummingbirds. PIV allowed the researchers to record the particles surrounding the birds and extract velocity fields.

The films and velocity fields showed two distinct jets of downwards airflow — one under each wing of the hummingbird. They also revealed that vortex loops around each jet are shed during each upstroke and downstroke.

The researchers therefore propose in their paper published online last month in the journal Experiments in Fluids that the hummingbird's two wings form bilateral vortex loops during each wing stroke, which is advantageous for maneuverability.

"Previous studies have indicated that slow-flying bats and faster flying birds produced different structures in their wakes," said Douglas Altshuler, formerly an assistant professor of biology at UC Riverside, whose lab led the research. "We have been investigating the wake structure of hovering hummingbirds because this allows us to decouple the effects of different types of wings — bat versus bird — from different forward flight speeds.

Hummingbirds each weigh 2-20 grams. Because they can hover with high precision, they are able to drink nectar from flowers without any jiggling movement to their bodies. Besides using upstrokes and downstrokes, hummingbirds can rotate their wings. They can even flap their wings from front to back with a 180-degree amplitude.

"We began this study to investigate how the hummingbird used its tail while hovering," said Marko Princevac, an associate professor of mechanical engineering and a coauthor of the research paper. "After all, many insects also hover, but they have no tail. Instead, however, our research showed something interesting about the hummingbird's wings: the bilateral vortex structure. Hummingbirds hovering should cost a lot of energy but these birds are able to hover for long periods of time. Ideally, unmanned vehicles need to be operated with a very limited energy supply, which is why understanding how the hummingbird maximizes its use of energy is tremendously beneficial."

Sam Pournazeri, a former Ph.D. graduate student in Princevac's lab and a co-author on the paper, explained that in a downstroke, the air pressure difference developed as a result of wing movement creates flow from the bottom to the top of the wing. The result is a circular movement or vortex.

"Based on theories in fluid mechanics, this vortex should close either on the wing/body or create a loop around it," he said. "It's these loops that provide circulation around the wings and cause the hummingbird to overcome its weight. Hovering requires the bird to create a lift that cancels its body weight. Although the two-vortex structure we observed increases the hummingbird's energy consumption, it provides the bird a big advantage: a lot more maneuverability."

Next, the research team plans to study the hummingbird in a wind tunnel to closely observe how the bird transitions from hovering to forward motion, and vice versa.

"Current technology is not successfully mimicking how living things fly," Princevac said. "Drones don't hover, and must rely on forward motion. Research done using hummingbirds, like ours, can inform the development of the next generation of drones."

The research was funded by a grant from the National Science Foundation to Altshuler, now a faculty member at the University of British Columbia, Canada.

Paolo S. Segre, a former UCR graduate student working with Altshuler at the University of British Columbia, also participated in the study. Pournazeri and Segre contributed equally to the research.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittawala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>