Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2-way traffic enable proteins to get where needed, avoid disease

26.11.2013
It turns out that your messenger RNA may catch more than one ride to get where it's going.

Scientists have found that mRNA may travel one way down a cell, then board another, aptly named motor protein, and head in the opposite direction to get where it ultimately needs to be.

It's a pretty important journey, because mRNA determines which proteins a cell expresses, differentiating a brain cell from, say, a muscle cell, said Dr. Graydon B. Gonsalvez, cell biologist at the Medical College of Georgia at Georgia Regents University.

"It used to be thought there was a relatively simple scenario where if a cargo needs to go here, it gets on one track and it goes that way," said Gonsalvez, corresponding author of the study in the journal PLOS ONE.

But like a motorist on a backed-up interstate, scientists at MCG and the University of Cambridge, have found that mRNA needs the flexibility to maneuver around potentially numerous obstacles in its path to ultimately arrive at the right spot.

"The ability to reverse their tracks is important to their ability to eventually get where they need to go," Gonsalvez said. And location is really everything, because the proteins need to be expressed in a specific location to function correctly.

While too much misdirection is incompatible with life, a little is OK and maybe even normal. But at levels in between, the health consequences can include Alzheimer's, cancer, multiple sclerosis, and Fragile X syndrome, which can produce mild to severe intellectual deficits as well as physical characteristics such as flat feet and an elongated face. "Most human diseases come from not a loss of a process, but a compromise to the process," Gonsalvez said.

The scientists suspected the bidirectional ability because they could see the two motor proteins that would head in opposite directions parked side-by-side in the cell. When they removed the then-idle motor that could go in the opposite direction, delivery, or localization, of the cargo mRNA already en-route was compromised.

"What we have seen is that there are many things that can reverse that track," Gonsalvez said. "If they can only go in one direction, they can bump into something, like a stray organelle, and get stuck."

Motor proteins have long been known to haul mRNA up and down the cell's cytoskeleton, which essentially functions as an internal roadway for the cell. Gonsalvez recently received a $1.4 million grant from the National Institutes of Health to fill in other important knowledge gaps about the journey, like how the motor proteins know which mRNA to transport, because not all mRNA needs to be localized.

He likens the routing system to a ZIP code and thinks proteins are again key, but in this case, they are bound to the mRNA, flagging it for travel. "Something is telling the cell that this message is different," he said.

In the case of Fragile X syndrome, for example, he suspects that one or more proteins that should be bound to mRNA are missing so the cell can't tell the messenger it needs to be moved.

Another question Gonsalvez wants to answer is how mRNA holds on for the ride since the motor protein won't bind with it directly.

"These are not easy questions but the thought is once we understand the answers, we will understand why, when you have a defect in this process, you have a disease pathology," Gonsalvez said.

He notes that transportation of mRNA occurs lifelong, since proteins have a limited life and are constantly being replaced.

His research model is the comparatively simple fruit fly in which the technology is available to selectively knock out motor proteins in specific cells. His published research was funded by the American Cancer Society and the NIH.

Toni Baker | EurekAlert!
Further information:
http://www.gru.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>