Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


2-way traffic enable proteins to get where needed, avoid disease

It turns out that your messenger RNA may catch more than one ride to get where it's going.

Scientists have found that mRNA may travel one way down a cell, then board another, aptly named motor protein, and head in the opposite direction to get where it ultimately needs to be.

It's a pretty important journey, because mRNA determines which proteins a cell expresses, differentiating a brain cell from, say, a muscle cell, said Dr. Graydon B. Gonsalvez, cell biologist at the Medical College of Georgia at Georgia Regents University.

"It used to be thought there was a relatively simple scenario where if a cargo needs to go here, it gets on one track and it goes that way," said Gonsalvez, corresponding author of the study in the journal PLOS ONE.

But like a motorist on a backed-up interstate, scientists at MCG and the University of Cambridge, have found that mRNA needs the flexibility to maneuver around potentially numerous obstacles in its path to ultimately arrive at the right spot.

"The ability to reverse their tracks is important to their ability to eventually get where they need to go," Gonsalvez said. And location is really everything, because the proteins need to be expressed in a specific location to function correctly.

While too much misdirection is incompatible with life, a little is OK and maybe even normal. But at levels in between, the health consequences can include Alzheimer's, cancer, multiple sclerosis, and Fragile X syndrome, which can produce mild to severe intellectual deficits as well as physical characteristics such as flat feet and an elongated face. "Most human diseases come from not a loss of a process, but a compromise to the process," Gonsalvez said.

The scientists suspected the bidirectional ability because they could see the two motor proteins that would head in opposite directions parked side-by-side in the cell. When they removed the then-idle motor that could go in the opposite direction, delivery, or localization, of the cargo mRNA already en-route was compromised.

"What we have seen is that there are many things that can reverse that track," Gonsalvez said. "If they can only go in one direction, they can bump into something, like a stray organelle, and get stuck."

Motor proteins have long been known to haul mRNA up and down the cell's cytoskeleton, which essentially functions as an internal roadway for the cell. Gonsalvez recently received a $1.4 million grant from the National Institutes of Health to fill in other important knowledge gaps about the journey, like how the motor proteins know which mRNA to transport, because not all mRNA needs to be localized.

He likens the routing system to a ZIP code and thinks proteins are again key, but in this case, they are bound to the mRNA, flagging it for travel. "Something is telling the cell that this message is different," he said.

In the case of Fragile X syndrome, for example, he suspects that one or more proteins that should be bound to mRNA are missing so the cell can't tell the messenger it needs to be moved.

Another question Gonsalvez wants to answer is how mRNA holds on for the ride since the motor protein won't bind with it directly.

"These are not easy questions but the thought is once we understand the answers, we will understand why, when you have a defect in this process, you have a disease pathology," Gonsalvez said.

He notes that transportation of mRNA occurs lifelong, since proteins have a limited life and are constantly being replaced.

His research model is the comparatively simple fruit fly in which the technology is available to selectively knock out motor proteins in specific cells. His published research was funded by the American Cancer Society and the NIH.

Toni Baker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>