Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2-way traffic enable proteins to get where needed, avoid disease

26.11.2013
It turns out that your messenger RNA may catch more than one ride to get where it's going.

Scientists have found that mRNA may travel one way down a cell, then board another, aptly named motor protein, and head in the opposite direction to get where it ultimately needs to be.

It's a pretty important journey, because mRNA determines which proteins a cell expresses, differentiating a brain cell from, say, a muscle cell, said Dr. Graydon B. Gonsalvez, cell biologist at the Medical College of Georgia at Georgia Regents University.

"It used to be thought there was a relatively simple scenario where if a cargo needs to go here, it gets on one track and it goes that way," said Gonsalvez, corresponding author of the study in the journal PLOS ONE.

But like a motorist on a backed-up interstate, scientists at MCG and the University of Cambridge, have found that mRNA needs the flexibility to maneuver around potentially numerous obstacles in its path to ultimately arrive at the right spot.

"The ability to reverse their tracks is important to their ability to eventually get where they need to go," Gonsalvez said. And location is really everything, because the proteins need to be expressed in a specific location to function correctly.

While too much misdirection is incompatible with life, a little is OK and maybe even normal. But at levels in between, the health consequences can include Alzheimer's, cancer, multiple sclerosis, and Fragile X syndrome, which can produce mild to severe intellectual deficits as well as physical characteristics such as flat feet and an elongated face. "Most human diseases come from not a loss of a process, but a compromise to the process," Gonsalvez said.

The scientists suspected the bidirectional ability because they could see the two motor proteins that would head in opposite directions parked side-by-side in the cell. When they removed the then-idle motor that could go in the opposite direction, delivery, or localization, of the cargo mRNA already en-route was compromised.

"What we have seen is that there are many things that can reverse that track," Gonsalvez said. "If they can only go in one direction, they can bump into something, like a stray organelle, and get stuck."

Motor proteins have long been known to haul mRNA up and down the cell's cytoskeleton, which essentially functions as an internal roadway for the cell. Gonsalvez recently received a $1.4 million grant from the National Institutes of Health to fill in other important knowledge gaps about the journey, like how the motor proteins know which mRNA to transport, because not all mRNA needs to be localized.

He likens the routing system to a ZIP code and thinks proteins are again key, but in this case, they are bound to the mRNA, flagging it for travel. "Something is telling the cell that this message is different," he said.

In the case of Fragile X syndrome, for example, he suspects that one or more proteins that should be bound to mRNA are missing so the cell can't tell the messenger it needs to be moved.

Another question Gonsalvez wants to answer is how mRNA holds on for the ride since the motor protein won't bind with it directly.

"These are not easy questions but the thought is once we understand the answers, we will understand why, when you have a defect in this process, you have a disease pathology," Gonsalvez said.

He notes that transportation of mRNA occurs lifelong, since proteins have a limited life and are constantly being replaced.

His research model is the comparatively simple fruit fly in which the technology is available to selectively knock out motor proteins in specific cells. His published research was funded by the American Cancer Society and the NIH.

Toni Baker | EurekAlert!
Further information:
http://www.gru.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>