Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2-pronged protein attack could be source of SARS virulence

02.11.2009
Ever since the previously unknown SARS virus emerged from southern China in 2003, University of Texas Medical Branch at Galveston virologists have focused on finding the source of the pathogen's virulence — its ability to cause disease. In the 2003 epidemic, for example, between 5 and 10 percent of those who fell sick from the SARS virus died, adding up to more than 900 fatalities worldwide.

Now, UTMB researchers have uncovered what they believe could be the major factor contributing to the SARS virus' virulence: the pathogen's use of a single viral protein to weaken host cell defenses by launching a "two-pronged" attack on cellular protein-synthesis machinery.

Their results show that copies of this viral protein, known as nsp1, directly interferes with the tiny cellular machines called ribosomes, which make the proteins, such as interferon beta, that are crucial for immune defense. (If the word "ribosome" sounds familiar, it's probably because the three scientists who first determined what the miniature protein factories look like and how they function won the 2009 Nobel Prize for Chemistry.) Nsp1 is also involved in degrading the biochemical messages that are decoded by these ribosomes to produce such proteins.

"This SARS virus protein, nsp1, binds to ribosomes to inactivate them and also modifies messenger RNA molecules to make them unreadable," said UTMB professor Shinji Makino, senior author of a paper on the discovery appearing in the online edition of Nature Structure and Molecular Biology. "We think that this property of nsp1 could be a major player in the virulence of SARS."

Makino and the article's other authors — postdoctoral fellows Wataru Kamitani, Cheng Huang and Kumari Lokugamage, and senior research scientist Krishna Narayanan — identified nsp1's dual effect with a series of experiments mainly done using purified nsp1 protein in a special "cell-free" system. This widely used test-tube platform, known as a "rabbit reticulocyte lysate" (RRL) system, contained only the subcellular structures and materials (ribosomes, amino acids and various control factors) that cells use to produce or "translate" proteins from messenger-RNA templates.

The researchers also developed a mutant form of the nsp1 protein that was incapable of interfering with RNA translation, employing it as an experimental control.

By measuring the outcomes produced by mixing a variety of different messenger-RNA templates with either nsp1 or mutant nsp1 in RRL, the investigators generated a strikingly detailed picture of how nsp1 interferes with ribosomes and degrades messenger RNA. Nsp1 grabs on to ribosomes, attaching to a specific part known as the 40s subunit to shut down protein production Meanwhile, the messenger RNA molecules being translated into proteins on these ribosomes are degraded by processes tied to nsp1.

"This is interesting in part because it's a new mechanism — no other known protein uses this strategy," Makino said. "But there are more practical reasons why it's important to understand viral virulence factors, particularly when you consider the potential need for treatments. There are viruses similar to SARS circulating in China, and we have no way of knowing whether this virus may come back."

The U.S. Public Health Service and the James W. McLaughlin Foundation supported this work.

About UTMB

UTMB was established in 1891. The 84-acre campus includes four schools, three institutes for advanced study, a major medical library, a network of hospitals and clinics that provide a full range of primary and specialized medical care and numerous research facilities. UTMB is a component of the University of Texas System.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>