Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2-pronged protein attack could be source of SARS virulence

02.11.2009
Ever since the previously unknown SARS virus emerged from southern China in 2003, University of Texas Medical Branch at Galveston virologists have focused on finding the source of the pathogen's virulence — its ability to cause disease. In the 2003 epidemic, for example, between 5 and 10 percent of those who fell sick from the SARS virus died, adding up to more than 900 fatalities worldwide.

Now, UTMB researchers have uncovered what they believe could be the major factor contributing to the SARS virus' virulence: the pathogen's use of a single viral protein to weaken host cell defenses by launching a "two-pronged" attack on cellular protein-synthesis machinery.

Their results show that copies of this viral protein, known as nsp1, directly interferes with the tiny cellular machines called ribosomes, which make the proteins, such as interferon beta, that are crucial for immune defense. (If the word "ribosome" sounds familiar, it's probably because the three scientists who first determined what the miniature protein factories look like and how they function won the 2009 Nobel Prize for Chemistry.) Nsp1 is also involved in degrading the biochemical messages that are decoded by these ribosomes to produce such proteins.

"This SARS virus protein, nsp1, binds to ribosomes to inactivate them and also modifies messenger RNA molecules to make them unreadable," said UTMB professor Shinji Makino, senior author of a paper on the discovery appearing in the online edition of Nature Structure and Molecular Biology. "We think that this property of nsp1 could be a major player in the virulence of SARS."

Makino and the article's other authors — postdoctoral fellows Wataru Kamitani, Cheng Huang and Kumari Lokugamage, and senior research scientist Krishna Narayanan — identified nsp1's dual effect with a series of experiments mainly done using purified nsp1 protein in a special "cell-free" system. This widely used test-tube platform, known as a "rabbit reticulocyte lysate" (RRL) system, contained only the subcellular structures and materials (ribosomes, amino acids and various control factors) that cells use to produce or "translate" proteins from messenger-RNA templates.

The researchers also developed a mutant form of the nsp1 protein that was incapable of interfering with RNA translation, employing it as an experimental control.

By measuring the outcomes produced by mixing a variety of different messenger-RNA templates with either nsp1 or mutant nsp1 in RRL, the investigators generated a strikingly detailed picture of how nsp1 interferes with ribosomes and degrades messenger RNA. Nsp1 grabs on to ribosomes, attaching to a specific part known as the 40s subunit to shut down protein production Meanwhile, the messenger RNA molecules being translated into proteins on these ribosomes are degraded by processes tied to nsp1.

"This is interesting in part because it's a new mechanism — no other known protein uses this strategy," Makino said. "But there are more practical reasons why it's important to understand viral virulence factors, particularly when you consider the potential need for treatments. There are viruses similar to SARS circulating in China, and we have no way of knowing whether this virus may come back."

The U.S. Public Health Service and the James W. McLaughlin Foundation supported this work.

About UTMB

UTMB was established in 1891. The 84-acre campus includes four schools, three institutes for advanced study, a major medical library, a network of hospitals and clinics that provide a full range of primary and specialized medical care and numerous research facilities. UTMB is a component of the University of Texas System.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>