Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


2 genes influence social behavior, visual-spatial performance in people with Williams syndrome

Utah, Salk researchers narrow search for behavior-related genes

Unraveling the genetics of social behavior and cognitive abilities, researchers at the University of Utah and the Salk Institute for Biological Studies have traced the role of two genes,GTF2I and GTF2IRD, in a rare genetic disorder known as Williams Syndrome.

Their results, published in the Feb. 9, 2009, online edition of the American Journal of Medical Genetics, suggest that GTF2IRD1 contributes to visual-spatial performance while GTF2I plays a role in social behavior. These findings illuminate the most complex aspects of being human.

"Identifying these two genes is the pinnacle of many years' work examining hundreds of cases with Williams syndrome and developing techniques and analyses to find individual genes associated with behavior," says team leader Julie R. Korenberg, M.D., Ph.D., professor and director of the Center for Integrated Neurosciences and Human Behavior at the Brain Institute at the University of Utah and Salk Institute adjunct professor. Korenberg has studied Williams syndrome for more than 15 years through a Program Project from NICHD called "Williams Syndrome: Linking Cognition, Brain and Gene." Collaborating on the behavioral aspects of this disorder has been Ursula Bellugi, professor and director of the Laboratory of Cognitive Neuroscience at the Salk Institute.

To children with Williams Syndrome, people are much more comprehensible than inanimate objects. Despite myriad health problems and generally low IQs, these patients are extremely gregarious, irresistibly drawn to strangers, and insist on making eye contact. The children are confounded by the visual world around them, however: Asked to draw a bicycle, they will show all the parts, but strew them randomly across the page (see figure). This strange mix of mental peaks and valleys drew Korenberg and Bellugi to the disorder.

"Williams syndrome presents a unique lens for discovering the how genes form the brain circuitry responsible for human behavior," explains Korenberg. This prompted Korenberg's collaboration with Bellugi, who is interested in the cognitive aspects of the disorder, "Genetic contributions to human cognition and behavior are clear but difficult to define," says Bellugi.

Virtually everyone with Williams Syndrome has exactly the same set of genes missing (25 to 28 genes are missing from one of two copies of chromosome 7). There also are rare cases of individuals who retain one or more genes that most people with the disorder have lost.

"I wanted to focus on something that could get me down to just a few genes related to behavior," says senior author Korenberg, also a USTAR professor of pediatric genetics at the University of Utah School of Medicine. "When it became clear that Williams Syndrome is caused by a microdeletion of genes, we could start looking at smaller and smaller gene deletions to study their effect on social behavior."

Two genes in particular, GTF2IRD1 and GTF2I, caught Korenberg's eye. Both encode transcription factors that help regulate the activity of other genes. Although their exact function is unknown, the genes are active in many body tissues and appear to be particularly important in regulating brain and skeletal muscle genes.

In earlier studies, Korenberg and her collaborators linked both GTF2I and GTF2IRD1 to deficits in visual-spatial processing, a hallmark of Williams Syndrome. The researchers are now dissecting the genes' roles even more. "Further parsing the effects of GTF2IRD1 versus GTF2I on spatial construction and social behavior was previously hampered by the small number of cases with fewer than the usual gene deletions and limited cognitive data," explains Korenberg.

To distinguish the roles of the two genes, postdoctoral researcher and study first author Li Dai, Ph.D., combed the genomes of 17 Williams Syndrome patients to identify those who had lost only one GTF2I gene. This allowed identification of a girl who had retained GTF2I but didn't fit the classical description of the disorder. "Finding this girl was very exciting," Korenberg said. "Her case had so much power to explain the role of these genes."

When the Salk researchers tested the girl to measure her IQ and social behavior, they found her scores in vocabulary, information processing, comprehension, arithmetic, and the ability to finish partially completed drawings to be substantially closer to normal than most patients with Williams syndrome.

Her full-spectrum IQ, a measure of both functional and performance intelligence, was 78, a full 18 points higher than average for someone with the disorder. Yet in two areas, the ability to assemble objects or work through a maze, the girl scored lower than average for people with the syndrome and substantially lower than normal.

These tests also confirmed that her social behavior is different than expected. While she is charming and engaging, she does not run up to people and does not maintain as much eye contact or physical proximity to others when conversing.

"Because she has the typical facial features and severe deficits in visual spatial skills, but lacks the overly social behavior, it suggested to us that GTF2IRD1 contributes to visual-spatial performance while GTF2I plays a role in social behavior," says Korenberg.

Although this work presents a major step forward in linking GTF2I to social behavior, it does not mean they are the only genes involved, Korenberg notes. Endowed with the power to control the activity of other genes, GTF2I might regulate signal pathways determining the structure and function of the brain or the production of neurohormones such as vasopressin and oxytoxin. Oxytoxin plays a key role in the desire to seek social interactions and trusting others, which might explain why for children with Williams syndrome, the world has no strangers, only friends.

About the Brain Institute at the University of Utah

One in three people will suffer from a brain disorder during their lifetime. The other two thirds will suffer right along with them. The Brain Institute at the University of Utah, is doing something about that. Born in 2005 with the vision and support of the University of Utah leadership, more than 100 scientists, researchers, practitioners, and administrators are dedicated to advancing the mission of The Brain Institute.

In a short period of time, many nationally and internationally recognized experts have embraced the goals of The Brain Institute, furthering their research in Alzheimer's Disease, Autism, Depression, Multiple Sclerosis, Parkinson's, Spinal Cord Injuries, Substance Abuse, and Stroke.

As a hub of U.S. genetic research, Salt Lake City and the intermountain area provide a unique benefit to The Brain Institute: a receptive environment and many established centers that provides the perfect home and resources for leadership in the research and understanding of every type of devastating brain disorder.

About the Salk Institute:

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Phil Sahm | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>