Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 genes affect anxiety, behavior in mice with too much MeCP2

09.01.2012
The anxiety and behavioral issues associated with excess MeCP2 protein result from overexpression of two genes (Crh [corticotropin-releasing hormone] and Oprm 1 [mu-opioid receptor MOR 1]), which may point the way to treating these problems in patients with too much of the protein, said Baylor College of Medicine scientists in a report that appears online in the journal Nature Genetics.

Much of the work was done at the Jan and Dan L. Duncan Neurological Research Institute at Texas Children's Hospital.

MeCP2 is a "Goldilocks" in the protein world. When the protein is lacking or defective, girls develop the neurological disorder Rett syndrome early in life. Too much protein results in the more recently identified MeCP2 duplication syndrome, which usually affects boys, who may inherit the gene duplications either from their mothers or, in rare cases, develop it sporadically. In both cases, anxiety and social behavioral deficits are typical of those with the disease, along with other motor problems and cognitive defects.

"This is a nice example of a translational story," said Dr. Rodney Samaco, assistant professor of molecular and human genetics at BCM and first author of the paper. "We first identified the mouse model for MeCP2 duplication syndrome and then found people with the disorder in the clinic. We went back to the lab and found out that MeCP2 was indeed the major contributor to this phenotype in patients. We have now identified two genes involved in two major symptoms of the syndrome. Eventually, we may take the information back to the clinic to develop a treatment for patients."

"Loss or Gain of MeCP2 affects the expression of hundreds of genes, but discovering that two genes are the culprits in mediating anxiety and social behavioral problems is surprising," said Dr. Huda Zoghbi, professor of molecular and human genetics, neurology, neuroscience, and pediatrics at BCM and director of the NRI. She is the corresponding author of the report and a Howard Hughes Medical Institute Investigator.

Patients with MeCP2 duplication disorder have a duplication in chromosomes that span both the MECP2 gene and another called IRAK1. But with this new study, it is now clear that excess MeCP2 accounts for the neuropsychiatric symptoms.

In mice, doubled MeCP2 levels caused both anxiety and autism-like behaviors and altered the expression of several hundred genes. Of these, two genes – Crh and Oprm1, are implicated in anxiety and social behavior, said Samaco.

"Then, when we reduced the levels of Crh, we saw reduced anxiety," he said. "When we reduced levels of Oprm1, we improved the social behavior problems."

This finding is important because it shows that tweaking the expression of genes that the protein affects, rather than trying to adjust the levels of the finicky MeCP2 protein itself, can modify symptoms of MeCP2 disorders.

In fact, Samaco also reduced levels of the protein that is a cellular receptor for Crh, both through molecular means and with the use of a drug, and found that anxiety levels also went down. That could provide another means of dealing with anxiety associated with the duplication syndrome.

Others who took part in this research include: Caleigh Mandel-Brehm, Christopher M. McGraw, Chad A. Shaw and Bryan E. McGill, all with BCM when the research was done.

Support and funding for this work came from the BCM Intellectual and Developmental Disabilities Research Center, the BCM Microarray Core and the RNA In Situ and Mouse Neurobehavior cores at BCM, the National Institutes of Health, Autism Speaks, the Carl C. Anderson Sr. and Marie Jo Anderson Charitable Foundation, the Simons Foundation, the Rett Syndrome Research Trust, and the Howard Hughes Medical Institute.

For more information on basic science research at Baylor College of Medicine, please go to From the Lab at BCM.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>