Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


14 closely related crocodiles existed around 5 million years ago

14 species of crocodile lived in South America around 5 million years ago, at least seven of which populated the coastal areas of the Urumaco River in Venezuela at the same time.

Paleontologists from the University of Zurich have found evidence of an abundance of closely related crocodiles that remains unparalleled to this day. As they were highly specialized, the crocodiles occupied different eco-niches. When the watercourses changed due to the Andean uplift, however, all the crocodile species became extinct.

Crocodylus falconensis, a crocodile that assumably grew up to well over four meters long.
Picture: UZH

Globidentosuchus brachyrostris belonged to the caiman family. With its spherical teeth they likely specialized in shellfish, snails or crabs.
Picture: UZH

Nowadays, the most diverse species of crocodile are found in northern South America and Southeast Asia: As many as six species of alligator and four true crocodiles exist, although no more than two or three ever live alongside one another at the same time. It was a different story nine to about five million years ago, however, when a total of 14 different crocodile species existed and at least seven of them occupied the same area at the same time, as an international team headed by paleontologists Marcelo Sánchez and Torsten Scheyer from the University of Zurich is now able to reveal. The deltas of the Amazonas and the Urumaco, a river on the Gulf of Venezuela that no longer exists, boasted an abundance of extremely diverse, highly specialized species of crocodile that has remained unparalleled ever since.

Two new fossil crocodile species discovered
While studying the wealth of fossil crocodiles from the Miocene in the Urumaco region, the scientists discovered two new crocodile species: the Globidentosuchus brachyrostris, which belonged to the caiman family and had spherical teeth, and Crocodylus falconensis, a crocodile that the researchers assume grew up to well over four meters long. As Sánchez and his team reveal, Venezuela’s fossils include all the families of crocodile species that still exist all over the world today: the Crocodylidae, the so-called true crocodiles; the Alligatoridae, which, besides the true alligators, also include caimans; and the Gavialidae, which are characterized by their extremely long, thin snouts and are only found in Southeast Asia nowadays.

On account of the species’ extremely different jaw shapes, the researchers are convinced that the different crocodilians were highly specialized feeders: With their pointed, slender snouts, the fossil gharials must have preyed on fish. “Gharials occupied the niche in the habitat that was filled by dolphins after they became extinct,” Sánchez suspects. With its spherical teeth, however, Globidentosuchus brachyrostris most likely specialized in shellfish, snails or crabs. And giant crocodiles, which grew up to 12 meters long, fed on turtles, giant rodents and smaller crocodiles. “There were no predators back then in South America that could have hunted the three-meter-long turtles or giant rodents. Giant crocodiles occupied this very niche,” explains Scheyer.

Andean uplift led to extinction
The unusual variety of species in the coastal and brackish water regions of Urumaco and Amazonas came to an end around 5 million years ago when all the crocodile species died out. The reason behind their extinction, however, was not temperature or climate changes – temperatures in the Caribbean remained stable around the Miocene/Pliocene boundary. Instead, it was caused by a tectonic event: “The Andean uplift changed the courses of rivers. As a result, the Amazon River no longer drains into the Caribbean, but the considerably cooler Atlantic Ocean,” explains Sánchez. With the destruction of the habitat, an entirely new fauna emerged that we know from the Orinoco and Amazon regions today. In the earlier Urumaco region, however, a very dry climate has prevailed ever since the Urumaco River dried up.
T. M. Scheyer, O. A. Aguilera, M. Delfino, D. C. Fortier, A. A. Carlini, R. Sánchez, J. D. Carrillo-Briceño, L. Quiroz, and M. R. Sánchez-Villagra. Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics. Nature Communications. May 21, 2013. doi:10.1038/ncomms2940I:
Prof. Marcelo Sánchez-Villagra
Paleontological Institute and Museum
University of Zurich
Phone +41 44 634 23 42
Dr. Torsten Scheyer
Paleontological Institute and Museum
University of Zurich
Phone +41 44 634 23 22

Nathalie Huber | Universität Zürich
Further information:

More articles from Life Sciences:

nachricht First-time reconstruction of infectious bat influenza viruses
25.10.2016 | Universitätsklinikum Freiburg

nachricht The nanostructured cloak of invisibility
25.10.2016 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>