Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1000 new species discovered and described

20.02.2015

Six scientists from the Arthropoda Department of the Museum Koenig in Bonn (Zoological Research Museum Alexander Koenig – Leibniz-Institute for Animal Biodiversity) in Bonn have described over 1,000 new species during the last ten years.

While public interest on possible extrateestrial life is increasing, only a fraction of the biodiversity of our own planet is known. Current estimates suggest that there may be over eight million living species worldwide, but less than two million have been scientifically described.


Examples of the newly discovered species

copyright: ZFMK, Bonn

Six scientists from the Arthropoda Department of the Museum Koenig in Bonn (Zoological Research Museum Alexander Koenig – Leibniz-Institute for Animal Biodiversity) have been doing their share in filling this gap and have described over 1,000 new species during the last ten years.

Their new species come from all over the world and include mainly beetles, spiders, millipedes, flies, and butterflies. Many specimens have been collected during recent expeditions by the scientists themselves, whilst others come from the museum in Bonn and from other institutions. In these “treasure chests”, many species wait for decades until they are scientifically described.

To recognize a species as new to science and to scientifically describe it often take a long time and both processes may be compared with the meticulous search of a criminologist. It has to be ascertained that a potentially new species is truly different from all previously described species. In case of doubt, it is only by comparison with the specimens originally used to describe similar species – the so-called type specimens – that it can be decided whether the species in question is already known or indeed new.

For this reason, museums such as Museum Koenig play an important role as archives of biodiversity in space and time. As a result of the environmental degradation, species are currently disappearing more rapidly than during the last millions of years.

Taxonomists, the scientists that are occupied with discovering biodiversity, are thus engaged in a kind of race against time to describe as many species as possible before part of this diversity is forever gone.

At the same time, it is not only the species but also the taxonomists who are disappearing. For many animal groups there is an increasing lack of specialists capable to provide the fundaments for biology and related disciplines.

Nature protection and environmental conservation depend on taxonomy as do agronomy, parts of medicine, and evolutionary research. The neglect of taxonomic training at universities, the scarcity of job positions, and the often inadequate financial support are just three of the many reasons for the shortage of taxonomists.

Together with colleagues all over the world, the taxonomists in Bonn strive to counteract this development. Traditional approaches and methodologies to study unknown species are increasingly combined with modern technologies. Morphological and molecular data are gathered in integrative approaches, using both to characterize species. For example, genetic fingerprints, also known as DNA barcodes, are used in an effort to speed up the process of species identification. The next 1000 species will hopefully not take another decade.

Contact:
Dr. Dirk Ahrens, Dr. Bernhard Huber, Dr. Ximo Mengual-Sanchis, Dr. Ralph Peters, Dr. Dieter Stüning, Dr. Thomas Wesener

Zoological Research Museum Alexander Koenig – Leibniz-Institute for Animal Biodiversity
Adenauerallee 160, 53113 Bonn, Germany
Tel.: +49 (0)228 9122 0
Fax: +49 (0)228 9122 212
www.zfmk.de

E-Mail:
d.ahrens@zfmk.de
b.huber@zfmk.de
x.mengual@zfmk.de
r.peters@zfmk.de
t.wesener@zfmk.de

Illustration: Examples of the newly discovered species: (from top left to bottom right): the millipede Aphistogoniulus infernalis Wesener, 2009; the hoverfly Palpada prietorum Mengual, 2008; the may beetle Neoserica sapaensis Ahrens, Liu & Fabrizi, 2014; the daddy-long-legs spider Aetana omayan Huber, 2005; and the chalcid wasp Dibrachys verovesparum Peters & Baur, 2011 (detail image of the head).

Zoological Research Museum Alexander Koenig – Leibniz-Institute for Animal Biodiversity (ZFMK) is an independent research institute. The focus of research is on performing an inventory of the zoological species diversity on earth, on the analysis of changes in biodiversity as a result of environmental factors, and on evolutionary processes at the morphological and molecular levels. ZFMK furthermore explores the context of structure and function of ecological systems, advanced scientific methods, and the study of the history of science. The permanent exhibition “Our blue planet – the living network” offers a genuine nature experience based on naturalistic ecosystem displays.

The Leibniz Association is a network of 89 scientifically, legally, and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic and thematically-oriented research and offer scientific service of national significance while striving to find scientific solutions for major social challenges.

Sabine Heine | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>