Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After 100 Years, Understanding the Electrical Role of Dendritic Spines

06.12.2012
It’s the least understood organ in the human body: the brain, a massive network of electrically excitable neurons, all communicating with one another via receptors on their tree-like dendrites. Somehow these cells work together to enable great feats of human learning and memory. But how?
Researchers know dendritic spines play a vital role. These tiny membranous structures protrude from dendrites’ branches; spread across the entire dendritic tree, the spines on one neuron collect signals from an average of 1,000 others. But more than a century after they were discovered, their function still remains only partially understood.

A Northwestern University researcher, working in collaboration with scientists at the Howard Hughes Medical Institute (HHMI) Janelia Farm Research Campus, has recently added an important piece of the puzzle of how neurons “talk” to one another. The researchers have demonstrated that spines serve as electrical compartments in the neuron, isolating and amplifying electrical signals received at the synapses, the sites at which neurons connect to one another.

The key to this discovery is the result of innovative experiments at the Janelia Farm Research Campus and computer simulations performed at Northwestern University that can measure electrical responses on spines throughout the dendrites.

A paper about the findings, “Synaptic Amplification by Dendritic Spines Enhances Input Cooperatively,” was published November 22 in the journal Nature.

“This research conclusively shows that dendritic spines respond to and process synaptic inputs not just chemically, but also electrically,” said William Kath, professor of engineering sciences and applied mathematics at Northwestern’s McCormick School of Engineering, professor of neurobiology at the Weinberg College of Arts and Sciences, and one of the paper’s authors.

Dendritic spines come in a variety of shapes, but typically consist of a bulbous spine head at the end of a thin tube, or neck. Each spine head contains one or more synapses and is located in very close proximity to an axon coming from another neuron.

Scientists have gained insight into the chemical properties of dendritic spines: receptors on their surface are known to respond to a number of neurotransmitters, such as glutamate and glycine, released by other neurons. But because of the spines’ incredibly small size — roughly 1/100 the diameter of a human hair — their electrical properties have been harder to study

In this study, researchers at the HHMI Janelia Farm Research Campus used three experimental techniques to assess the electrical properties of dendritic spines in rats’ hippocampi, a part of the brain that plays an important role in memory and spatial navigation. First, the researchers used two miniature electrodes to administer current and measure its voltage response at different sites throughout the dendrites.

They also used a technique called “glutamate uncaging,” a process that involves releasing glutamate, an excitatory neurotransmitter, to evoke electrical responses from specific synapses, as if the synapse had just received a signal from a neighboring neuron. A third process utilized a calcium-sensitive dye — calcium is a chemical indicator of a synaptic event — injected into the neuron to provide an optical representation of voltage changes within the spine.

At Northwestern, researchers used computational models of real neurons — reconstructed from the same type of rat neurons — to build a 3D representation of the neuron with accurate information about each dendrites’ placement, diameter, and electrical properties. The computer simulations, in concert with the experiments, indicated that spines’ electrical resistance is consistent throughout the dendrites, regardless of where on the dendritic tree they are located.

While much research is still needed to gain a full understanding of the brain, knowledge about spines’ electrical processing could lead to advances in the treatment of diseases like Alzheimer’s and Huntington’s diseases.

“The brain is much more complicated than any computer we’ve ever built, and understanding how it works could lead to advances not just in medicine, but in areas we haven’t considered yet,” Kath said. “We could learn how to process information in ways we can only guess at now.”

Other authors of the paper, all of HHMI Janelia Farm Research Campus, include lead author Mark T. Harnett, Judit K. Makara, Nelson Spruston (formerly of Northwestern University), and Jeffrey C. Magee, the senior author on the paper.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>