Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the 100th protein structure solved at Diamond impacts our understanding of how insects smell

02.10.2009
Why recognizing sex pheromone components of the silkworm moth at the scale of atoms and molecules impacts on eco-friendly agriculture

New research announced today, Wednesday 30th September, by a team of leading scientists working with the UK's national Synchrotron, Diamond Light Source, could have a significant impact on the development and refinement of new eco-friendly pest control methods for worldwide agriculture.

Published in the Journal of Molecular Biology, the study was carried out by Dr Jing-Jiang Zhou and colleagues at the world's oldest agricultural research centre and the largest UK facility, Rothamsted Research, in collaboration with Professor Nick Keep's group from the Institute of Structural and Molecular Biology at Birkbeck, University of London.

Dr Jing-Jiang Zhou, Senior Research Scientist in insect molecular biology at Rothamsted Research, studies insect olfaction and chemical ecology at the molecular level, he explains, "Using Diamond Light Source's intense X-rays, we unravelled the detailed mechanisms linked to pheromone detection which dictates mating behaviour in silkworm moths. They are a model organism and any new insights into the working of their olfactory system has repercussions on our global understanding how insects locate mates and their hosts."

Solving this protein structure also represents a significant achievement in the advance of structural biology in the UK and it marks the 100th new structure identified at Diamond since its opening in 2007.

Professor Dave Stuart, Life Sciences Director at Diamond Light Source adds: "It is a milestone and it illustrates the fascinating range of structural biology being undertaken in the UK. Congratulations to the Rothamsted and Birkbeck groups; thanks to productive groups like these, there is currently an exponential growth in the number of structures solved at Diamond."

The importance of understanding how insects 'smell' and how the chemical signals are recognised is useful for many things, but especially for pest control in agriculture. Determining the composition and processes behind the olfactory functions of insects feed directly in to the development and refinement of new pathways to influence insect host locating behaviours. Plants use chemical signals to repel and attract insects and by harnessing a detailed understanding of the signals, farmers can plant companion species to create 'odours' that would make an area very unattractive or attractive to insects according to what they require. This is more commonly known as the push-pull system.

Many insects depend on chemicals like pheromones to communicate with each other and to find a suitable mate. There are two main sex pheromone components bombykol and bombykal in the silkworm moth. Bombykol, the first insect pheromone discovered 50 years ago is the only component involved in mating behaviour whereas bombykal is an antagonist.

Dr Jing-Jiang Zhou, adds: "So far, we know that odorant binding proteins [OBPs] within the organism pick up pheromones at pores on the outside of the antenna and carry them through a watery layer to the nerve endings. But it is not clear whether they simply transport and release molecules which bind to olfactory receptors or whether they form a specific OBP- pheromone complex which then activates the receptor. The structures we determined using the crystallography capabilities at Diamond give us a view of how these processes work."

Prof. Stuart explains how crystallography helps: "Studying proteins and the role they play within organisms is like having a 100 locks and keys in front of you and not having any idea as to what fits what…By solving the structure of these proteins, we understand more about their function and matching them becomes much easier."

Dr Zhou concludes: "It's not just the farming community which stands to benefit from this work. These new insights will be fed into the development and refinement of biosensors where detection sensitivity is paramount in areas like blood tests. One of our spin-off companies are also investigating how bees can detect some small quantities of explosives and stand to benefit from any knowledge we generate."

Rothamsted Research Institute is funded by BBSRC and Dr Zhou's project is funded by a BBSRC SCIBS initiative grant 'Defining the chemical space for ligands of odourant- binding proteins Ref:BB/D005892/1.

Diamond Light Source is funded by the UK Government through STFC and by the Wellcome Trust. Diamond is a platform for research for the Research Councils and in particular for AHRC, BBSRC,EPSRC, MRC and NERC.

Sarah Bucknall | EurekAlert!
Further information:
http://www.diamond.ac.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>