Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 step closer to an artificial nerve cell

09.07.2009
Scientists at the Swedish medical university Karolinska Institutet and Linköping University are well on the way to creating the first artificial nerve cell that can communicate specifically with nerve cells in the body using neurotransmitters. The technology has been published in an article in Nature Materials.

The methods that are currently used to stimulate nerve signals in the nervous system are based on electrical stimulation. Examples of this are cochlear implants, which are surgically inserted into the cochlea in the inner ear, and electrodes that are used directly in the brain. One problem with this method is that all cell types in the vicinity of the electrode are activated, which gives undesired effects.

Scientists have now used an electrically conducting plastic to create a new type of "delivery electrode" that instead releases the neurotransmitters that brain cells use to communicate naturally. The advantage of this is that only neighbouring cells that have receptors for the specific neurotransmitter, and that are thus sensitive to this substance, will be activated.

The scientists demonstrate in the article in Nature Materials that the delivery electrode can be used to control the hearing function in the brains of guinea pigs.

"The ability to deliver exact doses of neurotransmitters opens completely new possibilities for correcting the signalling systems that are faulty in a number of neurological disease conditions", says Professor Agneta Richter-Dahlfors who has led the work, together with Professor Barbara Canlon.

The scientists intend to continue with the development of a small unit that can be implanted into the body. It will be possible to program the unit such that the release of neurotransmitters takes place as often or as seldom as required in order to treat the individual patient. Research projects that are already under way are targeted towards hearing, epilepsy and Parkinson's disease.

The research is being carried out in collaboration between the research groups of Professor Agneta Richter-Dahlfors and Professor Barbara Canlon, together with Professor Magnus Berggren's group at Linköping University. The work falls under the auspices of the Center of Excellence in Organic Bioelectronics, financed by the Swedish Foundation for Strategic Research and led by Magnus Berggren and Agneta Richter-Dahlfors.

Publication: "Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function", Daniel T. Simon, Sindhulakshmi Kurup, Karin C. Larsson, Ryusuke Hori, Klas Tybrandt, Michel Goiny, Edwin W. H. Jager, Magnus Berggren, Barbara Canlon and Agneta Richter-Dahlfors, Nature Materials, Advance Online Publication, 5 June 2009.

For more information, contact:
Professor Agneta Richter-Dahlfors
Swedish Medical Nanoscience Center, Department of Neuroscience
Telephone: +46 (0)8-5248 7425
Mobile: +46 (0)70-257 7425
E-mail: agneta.richter.dahlfors@ki.se
Press Office:
Telephone: +46 (0)8-524 860 77
E-mail: pressinfo@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research and education, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Sabina Bossi | EurekAlert!
Further information:
http://www.ki.se
http://ki.se/pressimages

Further reports about: Karolinska Institutet Magnus Nature Immunology brain cell

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>