Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 room -- 63 different dust particles? Researchers aim to build dust library

06.10.2011
Researchers recently isolated 63 unique dust particles from their laboratory – and that’s just the beginning.

The chemists were testing a new kind of sensor when dust got stuck inside it, and they discovered that they could measure the composition of single dust particles.

In a recent issue of The Journal of Physical Chemistry C, they describe how the discovery could aid the study respiratory diseases caused by airborne particles.

Most dust is natural in origin, explained James Coe, professor of chemistry at Ohio State University. The 63 particles they identified were mainly irregular blobs containing bits of many different ingredients.

The most common ingredient of the dust particles was organic matter, Coe said. “Organic” indicates some kind of plant or animal material, though the researchers can’t yet say precisely what kinds of organic matter they found. They are about to do an in-depth analysis to find out.

Quartz was the second-most common ingredient. Both quartz and organic matter were found in more than half of the dust particles the researchers classified. Man-made chemicals from air pollution, fertilizers, and construction materials were also present in small amounts.

“In that way, a single dust particle is like a snapshot of mankind’s impact on the environment,” Coe said.

Scientists have had some difficulty getting precise measurements of dust composition, in part because standard techniques involve studying dust in bulk quantities rather than individual particles.

Nowhere is dust composition more important than in public health, where some airborne particulates have been linked to diseases. Coe cited silica dust from mining operations, which causes a lung disease called silicosis.

The patented sensor that Coe’s team was testing – a type of metal mesh that transmits infrared light through materials caught in the holes – is ideal for picking up minute details in the composition of single dust grains.

“We can separate particles by size to isolate the ones that are small enough to get into people’s lungs, and look at them in detail,” he added.

Coe didn’t set out to study dust. He and his team invented the metal mesh sensor in 2003, and discovered that they could use it to create surface plasmons – mixtures of conducting electrons and photons. The effect boosts the intensity of light passing through microscopic holes in the mesh, and lets scientists record a detailed infrared light spectrum. Any material stuck in the holes will leave a unique signature on the spectrum, so the sensor can be used to identify the chemicals in microscopic samples.

Early this year, the researchers were testing how light flows through the sensor, and they coated the mesh with a ring of tiny latex spheres to take a baseline measurement. The result should have been a spectrum unique to latex, but instead the spectrum carried the signature of several common minerals due to a single dust particle that had gotten inside the sensor – most likely from the laboratory air.

Coe launched a contest among his students to see who would be the first to take an infrared spectrum of a single dust particle – and an electron microscope image of the same particle. The winner got a free lunch and the chance to name the particle for publication.

Matthew McCormack, then an honors undergraduate student in the lab, won the contest and named the dust particle after his dog, Abby. His study of the particle formed the basis for his honors thesis, and the data has since been used by Coe and other members of the team in publications and presentations.

In subsequent tests, the students were able to isolate and study 63 individual dust particles from the air of their laboratory. The spectra they obtained with the sensor were free of scattering effects and stronger than expected.

The result is a library of common dust components from the lab. Forty of the particles (63 percent) contained organic material. The most common mineral was quartz, which was present in 34 (54 percent) of the particles, followed by carbonates (17 particles, or 27 percent), and gypsum (14 particles, or 22 percent).

Currently, Coe and his team are constructing computer algorithms to better analyze the mineral components and reveal details about the organic components.

A library of common dust components would be useful for many areas of science, he said.

Eventually, researchers in public health could use the sensor as a laboratory tool to analyze dust particles. It could also enable studies in astronomy, geology, environmental science, and atmospheric science.

McCormack is a co-author on the paper, along with Katherine Cilwa, now a postdoctoral researcher in chemistry at the University of Michigan; Michelle Lew, now a doctoral student in chemistry at Indiana University; Christophe Robitaille, now in medical school at the University of Chicago; Lloyd Corwin, a former Ohio State undergraduate student in nuclear engineering; and Marvin Malone, a current doctoral student in Coe’s laboratory.

This research was supported by the National Science Foundation.

Contact: James Coe, (614) 292-9489; Coe.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

James Coe | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>