Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 room -- 63 different dust particles? Researchers aim to build dust library

06.10.2011
Researchers recently isolated 63 unique dust particles from their laboratory – and that’s just the beginning.

The chemists were testing a new kind of sensor when dust got stuck inside it, and they discovered that they could measure the composition of single dust particles.

In a recent issue of The Journal of Physical Chemistry C, they describe how the discovery could aid the study respiratory diseases caused by airborne particles.

Most dust is natural in origin, explained James Coe, professor of chemistry at Ohio State University. The 63 particles they identified were mainly irregular blobs containing bits of many different ingredients.

The most common ingredient of the dust particles was organic matter, Coe said. “Organic” indicates some kind of plant or animal material, though the researchers can’t yet say precisely what kinds of organic matter they found. They are about to do an in-depth analysis to find out.

Quartz was the second-most common ingredient. Both quartz and organic matter were found in more than half of the dust particles the researchers classified. Man-made chemicals from air pollution, fertilizers, and construction materials were also present in small amounts.

“In that way, a single dust particle is like a snapshot of mankind’s impact on the environment,” Coe said.

Scientists have had some difficulty getting precise measurements of dust composition, in part because standard techniques involve studying dust in bulk quantities rather than individual particles.

Nowhere is dust composition more important than in public health, where some airborne particulates have been linked to diseases. Coe cited silica dust from mining operations, which causes a lung disease called silicosis.

The patented sensor that Coe’s team was testing – a type of metal mesh that transmits infrared light through materials caught in the holes – is ideal for picking up minute details in the composition of single dust grains.

“We can separate particles by size to isolate the ones that are small enough to get into people’s lungs, and look at them in detail,” he added.

Coe didn’t set out to study dust. He and his team invented the metal mesh sensor in 2003, and discovered that they could use it to create surface plasmons – mixtures of conducting electrons and photons. The effect boosts the intensity of light passing through microscopic holes in the mesh, and lets scientists record a detailed infrared light spectrum. Any material stuck in the holes will leave a unique signature on the spectrum, so the sensor can be used to identify the chemicals in microscopic samples.

Early this year, the researchers were testing how light flows through the sensor, and they coated the mesh with a ring of tiny latex spheres to take a baseline measurement. The result should have been a spectrum unique to latex, but instead the spectrum carried the signature of several common minerals due to a single dust particle that had gotten inside the sensor – most likely from the laboratory air.

Coe launched a contest among his students to see who would be the first to take an infrared spectrum of a single dust particle – and an electron microscope image of the same particle. The winner got a free lunch and the chance to name the particle for publication.

Matthew McCormack, then an honors undergraduate student in the lab, won the contest and named the dust particle after his dog, Abby. His study of the particle formed the basis for his honors thesis, and the data has since been used by Coe and other members of the team in publications and presentations.

In subsequent tests, the students were able to isolate and study 63 individual dust particles from the air of their laboratory. The spectra they obtained with the sensor were free of scattering effects and stronger than expected.

The result is a library of common dust components from the lab. Forty of the particles (63 percent) contained organic material. The most common mineral was quartz, which was present in 34 (54 percent) of the particles, followed by carbonates (17 particles, or 27 percent), and gypsum (14 particles, or 22 percent).

Currently, Coe and his team are constructing computer algorithms to better analyze the mineral components and reveal details about the organic components.

A library of common dust components would be useful for many areas of science, he said.

Eventually, researchers in public health could use the sensor as a laboratory tool to analyze dust particles. It could also enable studies in astronomy, geology, environmental science, and atmospheric science.

McCormack is a co-author on the paper, along with Katherine Cilwa, now a postdoctoral researcher in chemistry at the University of Michigan; Michelle Lew, now a doctoral student in chemistry at Indiana University; Christophe Robitaille, now in medical school at the University of Chicago; Lloyd Corwin, a former Ohio State undergraduate student in nuclear engineering; and Marvin Malone, a current doctoral student in Coe’s laboratory.

This research was supported by the National Science Foundation.

Contact: James Coe, (614) 292-9489; Coe.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

James Coe | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>