Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 room -- 63 different dust particles? Researchers aim to build dust library

06.10.2011
Researchers recently isolated 63 unique dust particles from their laboratory – and that’s just the beginning.

The chemists were testing a new kind of sensor when dust got stuck inside it, and they discovered that they could measure the composition of single dust particles.

In a recent issue of The Journal of Physical Chemistry C, they describe how the discovery could aid the study respiratory diseases caused by airborne particles.

Most dust is natural in origin, explained James Coe, professor of chemistry at Ohio State University. The 63 particles they identified were mainly irregular blobs containing bits of many different ingredients.

The most common ingredient of the dust particles was organic matter, Coe said. “Organic” indicates some kind of plant or animal material, though the researchers can’t yet say precisely what kinds of organic matter they found. They are about to do an in-depth analysis to find out.

Quartz was the second-most common ingredient. Both quartz and organic matter were found in more than half of the dust particles the researchers classified. Man-made chemicals from air pollution, fertilizers, and construction materials were also present in small amounts.

“In that way, a single dust particle is like a snapshot of mankind’s impact on the environment,” Coe said.

Scientists have had some difficulty getting precise measurements of dust composition, in part because standard techniques involve studying dust in bulk quantities rather than individual particles.

Nowhere is dust composition more important than in public health, where some airborne particulates have been linked to diseases. Coe cited silica dust from mining operations, which causes a lung disease called silicosis.

The patented sensor that Coe’s team was testing – a type of metal mesh that transmits infrared light through materials caught in the holes – is ideal for picking up minute details in the composition of single dust grains.

“We can separate particles by size to isolate the ones that are small enough to get into people’s lungs, and look at them in detail,” he added.

Coe didn’t set out to study dust. He and his team invented the metal mesh sensor in 2003, and discovered that they could use it to create surface plasmons – mixtures of conducting electrons and photons. The effect boosts the intensity of light passing through microscopic holes in the mesh, and lets scientists record a detailed infrared light spectrum. Any material stuck in the holes will leave a unique signature on the spectrum, so the sensor can be used to identify the chemicals in microscopic samples.

Early this year, the researchers were testing how light flows through the sensor, and they coated the mesh with a ring of tiny latex spheres to take a baseline measurement. The result should have been a spectrum unique to latex, but instead the spectrum carried the signature of several common minerals due to a single dust particle that had gotten inside the sensor – most likely from the laboratory air.

Coe launched a contest among his students to see who would be the first to take an infrared spectrum of a single dust particle – and an electron microscope image of the same particle. The winner got a free lunch and the chance to name the particle for publication.

Matthew McCormack, then an honors undergraduate student in the lab, won the contest and named the dust particle after his dog, Abby. His study of the particle formed the basis for his honors thesis, and the data has since been used by Coe and other members of the team in publications and presentations.

In subsequent tests, the students were able to isolate and study 63 individual dust particles from the air of their laboratory. The spectra they obtained with the sensor were free of scattering effects and stronger than expected.

The result is a library of common dust components from the lab. Forty of the particles (63 percent) contained organic material. The most common mineral was quartz, which was present in 34 (54 percent) of the particles, followed by carbonates (17 particles, or 27 percent), and gypsum (14 particles, or 22 percent).

Currently, Coe and his team are constructing computer algorithms to better analyze the mineral components and reveal details about the organic components.

A library of common dust components would be useful for many areas of science, he said.

Eventually, researchers in public health could use the sensor as a laboratory tool to analyze dust particles. It could also enable studies in astronomy, geology, environmental science, and atmospheric science.

McCormack is a co-author on the paper, along with Katherine Cilwa, now a postdoctoral researcher in chemistry at the University of Michigan; Michelle Lew, now a doctoral student in chemistry at Indiana University; Christophe Robitaille, now in medical school at the University of Chicago; Lloyd Corwin, a former Ohio State undergraduate student in nuclear engineering; and Marvin Malone, a current doctoral student in Coe’s laboratory.

This research was supported by the National Science Foundation.

Contact: James Coe, (614) 292-9489; Coe.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

James Coe | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>