Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1 region, 2 functions: Brain cells' multitasking key to understanding overall brain function

07.03.2013
A region of the brain known to play a key role in visual and spatial processing has a parallel function: sorting visual information into categories, according to a new study by researchers at the University of Chicago.

Primates are known to have a remarkable ability to place visual stimuli into familiar and meaningful categories, such as fruit or vegetables. They can also direct their spatial attention to different locations in a scene and make spatially-targeted movements, such as reaching.

The study, published in the March issue of Neuron, shows that these very different types of information can be simultaneously encoded within the posterior parietal cortex. The research brings scientists a step closer to understanding how the brain interprets visual stimuli and solves complex tasks.

"We found that multiple functions can be mapped onto a particular region of the brain and even onto individual brain cells in that region," said study author David Freedman, PhD, assistant professor of neurobiology at the University of Chicago. "These functions overlap. This particular brain area, even its individual neurons, can independently encode both spatial and cognitive signals."

Freedman studies the effects of learning on the brain and how information is stored in short-term memory, with a focus on the areas that process visual stimuli. To examine this phenomenon, he has taught monkeys to play a simple video game in which they learn to assign moving visual patterns into categories.

"The task is a bit like a baseball umpire calling balls and strikes," he said, "since the monkeys have to sort the various motion patterns into two groups, or categories."

The monkeys master the tasks over a few weeks of training. Once they do, the researchers record electrical signals from parietal lobe neurons while the subjects perform the categorization task. By measuring electrical activity patterns of these neurons, the researchers can decode the information conveyed by the neurons' activity.

"The activity patterns in these parietal neurons carry strong information about the category that each motion pattern gets assigned to during the task," Freedman said.

Over the years, his team's work on categorization has zeroed in on the lateral intraparietal (LIP) area. Studies have shown that this area is vital to directing spatial attention and eye movements. But it had been unclear how an area involved in spatial attention and eye movements could also play a role in non-spatial functions such as visual categorization.

To compare spatial and category functions in the parietal lobe, Freedman and his team added a twist to the monkeys' task. During the category task, the researchers required the subjects to make eye-movements to visual cues at various positions on the computer screen, but the subjects still had to categorize the visual patterns at the same time that they made these eye movements.

Since this parietal brain area is known to be involved in eye movements, the eye movements could have disrupted category information in that part of the brain. Instead, parietal brain cells showed a simultaneous and independent encoding of both eye-movement and category information—multiplexing of information at the level of single brain cells.

"These signals rode right on top of the eye-movement signals," said the study's first author, Chris Rishel, PhD, a recent graduate from Freedman's laboratory. "We could decode both the eye-movement and the category signals with high accuracy. This tells us that different kinds of information that are usually considered quite unrelated were simultaneously and independently represented by neurons in this particular brain area."

Their results, the study authors note, "support the possibility that LIP plays a key role in transforming visual signals in earlier sensory areas into abstract category signals during category-based decision-making tasks."

What does the brain gain from this territorial arrangement?

"There has long been a tendency to look at the many distinct anatomical areas of the cerebral cortex of the brain and to assume that each area is like a specialized module that plays a very specific function." Freedman said. "Our results support the growing sense that most, if not all, of these brain areas have multiple overlapping roles."

A brain that includes such overlapping functional centers may be more efficient, Freedman suggests. "It makes mapping these regions more complicated for scientists like us, but it may boost the brain's capacity. If each area can do a number of different things, you can squeeze a lot more function into the same space."

A next step is to understand how neuronal category representations develop in LIP neurons during the learning process, the authors said.

The paper, "Independent category and spatial encoding in parietal cortex," will be published online March 6 by the journal Neuron. The National Institutes of Health funded this study with additional support from the National Science Foundation, the McKnight Endowment Fund for Neuroscience, the Alfred P. Sloan Foundation and the Brain Research Foundation. Gang Huang, formerly a research technician in the lab, also contributed to the research.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>