Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Whodunnit' of Irish potato famine solved

21.05.2013
An international team of scientists reveals that a unique strain of potato blight they call HERB-1 triggered the Irish potato famine of the mid-19th century

It is the first time scientists have decoded the genome of a plant pathogen and its plant host from dried herbarium samples. This opens up a new area of research to understand how pathogens evolve and how human activity impacts the spread of plant disease.


This is a potato specimen from the Kew Garden herbarium, collected in 1847, during the height of the Irish famine. The legend reads "Botrytis infestans", because it was not known yet that Phytophthora does not belong to the mildew causing Botrytis fungi.

Credit: Marco Thines/Senckenberg Gesellschaft für Naturforschung

Phytophthora infestans changed the course of history. Even today, the Irish population has still not recovered to pre-famine levels. "We have finally discovered the identity of the exact strain that caused all this havoc", says Hernán Burbano from the Max Planck Institute for Developmental Biology.

For research to be published in eLife, a team of molecular biologists from Europe and the US reconstructed the spread of the potato blight pathogen from dried plants. Although these were 170 to 120 years old, they were found to have many intact pieces of DNA.

"Herbaria represent a rich and untapped source from which we can learn a tremendous amount about the historical distribution of plants and their pests - and also about the history of the people who grew these plants," according to Kentaro Yoshida from The Sainsbury Laboratory in Norwich.

The researchers examined the historical spread of the fungus-like oomycete Phytophthora infestans, known as the Irish potato famine pathogen. A strain called US-1 was long thought to have been the cause of the fatal outbreak. The current study concludes that a strain new to science was responsible. While more closely related to the US-1 strain than to other modern strains, it is unique. "Both strains seem to have separated from each other only years before the first major outbreak in Europe," says Burbano.

The researchers compared the historic samples with modern strains from Europe, Africa and the Americas as well as two closely related Phytophthora species. The scientists were able to estimate with confidence when the various Phytophthora strains diverged from each other during evolutionary time. The HERB-1 strain of Phytophthora infestans likely emerged in the early 1800s and continued its global conquest throughout the 19th century. Only in the twentieth century, after new potato varieties were introduced, was HERB-1 replaced by another Phytophthora infestans strain, US-1.

The scientists found several connections with historic events. The first contact between Europeans and Americans in Mexico in the sixteenth century coincides with a remarkable increase in the genetic diversity of Phytophthora. The social upheaval during that time may have led to a spread of the pathogen from its center of origin in Toluca Valley, Mexico. This in turn would have accelerated its evolution.

The international team came to these conclusions after deciphering the entire genomes of 11 historical samples of Phytophthora infestans from potato leaves collected over more than 50 years. These came from Ireland, the UK, Europe and North America and had been preserved in the herbaria of the Botanical State Collection Munich and the Kew Gardens in London.

"Both herbaria placed a great deal of confidence in our abilities and were very generous in providing the dried plants," said Marco Thines from the Senckenberg Museum and Goethe University in Frankfurt, one of the co-authors of this study. "The degree of DNA preservation in the herbarium samples really surprised us," adds Johannes Krause from the University of Tübingen, another co-author. Because of the remarkable DNA quality and quantity in the herbarium samples, the research team could evaluate the entire genome of Phytophthora infestans and its host, the potato, within just a few weeks.

Crop breeding methods may impact on the evolution of pathogens. This study directly documents the effect of plant breeding on the genetic makeup of a pathogen.

"Perhaps this strain became extinct when the first resistant potato varieties were bred at the beginning of the twentieth century," speculates Yoshida. "What is for certain is that these findings will greatly help us to understand the dynamics of emerging pathogens. This type of work paves the way for the discovery of many more treasures of knowledge hidden in herbaria."

Original publication:

Kentaro Yoshida et al.

Herbarium metagenomics reveals the rise and fall of the Phytophthora lineage that triggered the Irish potato famine eLife, in press, doi 10.7554/elife.00731

Dr. Detlef Weigel | EurekAlert!
Further information:
http://www.tuebingen.mpg.de

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>