Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'Tree of Life' established for one of the largest groups of bacteria

18.05.2010
A new "tree of life" has been constructed by researchers at the Virginia Bioinformatics Institute (VBI) at Virginia Tech for the gamma-proteobacteria, a large group of medically and scientifically important bacteria that includes Escherichia coli, Salmonella typhimurium, and other disease-causing organisms.*

By building powerful phylogenetic trees, scientists are able to quickly identify similarities and differences between the make-up of many different organisms, crucial information in the search for treatments to fight anything from the bugs that cause food poisoning to the pathogens that cause life-threatening diseases such as cholera and the plague.

A "tree of life," or phylogenetic tree, is a way to visualize the evolutionary relationships among different biological species that have descended from a common ancestor. The gamma-proteobacteria tree developed by VBI researchers was reconstructed using powerful computers from as many as 30 million data points of bacterial sequence information.

Kelly Williams, Research Investigator at VBI, remarked: "Ribosomal RNA is one of the central components of the ribosome, the protein manufacturing machinery of all living cells. In the past, researchers have often depended on looking at a single ribosomal RNA gene to construct evolutionary relationships for their tree-building efforts. The method we use to make our tree of life uses hundreds of different genes and integrates much more information than can be gleaned from the traditional single gene approach. We firmly believe that the multi-gene or phylogenomics approach should become the standard for tree-building when several genome sequences are available, which is now the case for most bacterial groups."

The researchers selected 108 available genomes from the more than 200 complete and partial sequences available for the gamma-proteobacteria, placing the emphasis on the diversity of the bacterial species and quality of the original sequence data. Allan Dickerman, Assistant Professor at VBI, remarked: "The consensus tree that we have put together for the gamma-proteobacteria is a powerful tool that can be used to predict shared biology and analyze, for example, the novel ways that bacteria have adapted to their living environments. Phylogenomics provides for very accurate reconstructions of inheritance from common ancestors."

The researchers looked at a very large class of bacteria that lack a well-resolved phylogenetic tree. By placing emphasis on searches for single-copy genes, the scientists were able to radically improve the resolution of the evolutionary tree. Said Williams, "Some parts of our tree were still not fully resolved, but we believe that future work will improve our method further to handle these deficiencies."

Bruno Sobral, Director of the CyberInfrastructure Section at VBI, commented: "The work described in this paper was inspired and funded by the needs of our PATRIC 2.0 project. The effort is part of the on-going work of PATRIC 2.0 team members to build a comprehensive, state-of-the-art bioinformatics resource for bacteria that serves the biomedical research community. Because of the exponentially growing number of bacterial genomes that PATRIC needs to handle, we are now in a phase where whole-genome phylogenetic analysis is both possible and necessary. PATRIC is integrating the very latest phylogenomic information and tools, such as those in this paper and a preceding publication that developed a phylogenetic tree for the alpha-proteobacteria**, into our system." He added: "This work is a great example of how PATRIC implements and deploys an infrastructure that will allow any person to develop these results in the future by going to the PATRIC site."

In October 2009, The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), awarded a 5-year, $27,670,448 contract to Dr. Sobral's CyberInfrastructure Group of VBI to support the biomedical research community's work on infectious diseases. The funding is being used to integrate vital information on pathogens, provide key resources and tools to scientists, and help researchers to analyze genomic, proteomic and other data arising from infectious disease research.

###
For more information on PATRIC 2.0 please consult http://patricbrc.vbi.vt.edu/portal/portal/patric/Home

* Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW (2010) Phylogeny of Gammaproteobacteria. Journal of Bacteriology 192(9): 2305-2314. [PMID: 20207755]

** Williams KP, Sobral BW, Dickerman AW (2007) A robust species tree for the alphaproteobacteria. Journal of Bacteriology 189: 4578-4586. [PMID: 17483224]

About VBI

The Virginia Bioinformatics Institute (http://www.vbi.vt.edu) at Virginia Tech is a premier bioinformatics, computational biology, and systems biology research facility that uses transdisciplinary approaches to science combining information technology, biology, and medicine. These approaches are used to interpret and apply vast amounts of biological data generated from basic research to some of today's key challenges in the biomedical, environmental, and agricultural sciences. With more than 240 highly trained multidisciplinary, international personnel, research at the institute involves collaboration in diverse disciplines such as mathematics, computer science, biology, plant pathology, biochemistry, systems biology, statistics, economics, synthetic biology, and medicine. The large amounts of data generated by this approach are analyzed and interpreted to create new knowledge that is disseminated to the world's scientific, governmental, and wider communities.

About CIG

The Cyberinfrastructure Group (CIG) at VBI develops methods, infrastructure, and resources to help enable scientific discoveries in infectious disease research and other research fields. The group applies the principles of cyberinfrastructure to integrate data, computational infrastructure, and people. CIG has developed many public resources for curated, diverse molecular and literature data from various infectious disease systems, and implemented the processes, systems, and databases required to support them. It also conducts research by applying its methods and data to make new discoveries of its own. CIG has developed PATRIC, the PathoSystems Resource Integration Center (http://patricbrc.vbi.vt.edu/portal/portal/patric/Home), which serves as a comprehensive web-based resource for bacterial pathogens, biodefense research, and the study of emerging infectious diseases.

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>