Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel 'top-down' mechanism repatterns developing brain regions

23.07.2013
Salk findings on brain development may shed light on neurological disorders such as autism

Dennis O'Leary of the Salk Institute was the first scientist to show that the basic functional architecture of the cortex, the largest part of the human brain, was genetically determined during development. But as it so often does in science, answering one question opened up many others. O'Leary wondered what if the layout of the cortex wasn't fixed? What would happen if it were changed?

In the August issue of Nature Neuroscience, O'Leary, holder of the Vincent J. Coates Chair of Molecular Neurobiology at Salk, and Andreas Zembrzycki, a postdoctoral researcher in his lab, demonstrate that altering the cortical layout is possible, and that this alteration produces significant changes in parts of the brain that connect with the cortex and define its functional properties. These mechanisms may lay at the heart of neural developmental problems, such as autism spectrum disorders (ASD).

The human cortex is involved in higher functions such as sensory perception, spatial reasoning, conscious thought and language. All mammals have areas in the cortex that process the senses, but they have them in different proportions. Mice, the favorite laboratory animal, are nocturnal, so they have a large somatosensory area (S1) in the cortex, responsible for somatosensation, or feelings of the body that include touch, pain, temperature and proprioception.

"The area layout of the cortex directly relates to the lifestyle of an animal," says Zembrzycki. "Areas are bigger or smaller according to the functional needs of the animal, not the physical size of the body parts from which they receive input."

Even with relative sizes to other species set in place, areas in the cortex of humans may differ greatly across individuals. Such variations may underlie why some people appear to be naturally better at certain perceptual tasks, such as hitting a baseball or detecting the details of visual illusions. In patients with neurological disorders, there is an even wider range of differences.

The neurons in S1 are arranged in functional groups called body maps according to the density of nerve endings in the skin; thus, there's a larger group of neurons dedicated to the skin on the face, than the skin on the legs. Neurosurgeon Wilder Penfield famously illustrated this idea as a "sensory homunculus," a cartoon of disproportionately sized body parts arching over the cortex. Mice have a similar "mouseunculus" in their cortex in which the body map of the facial whiskers is highly enlarged.

These perceptual maps are not set for life. For example, if innervation of a body part is diminished early in life during a critical period, its map may shrink, while other parts of the body map may grow in compensation. This is a version of "bottom-up plasticity," in which external experience affects body maps in the brain.

In order to study cortical layout, O'Leary's team altered a regulatory gene, Pax6, in the cortex in mice. In response, S1 became much smaller, demonstrating that Pax6 regulates its development. They found that the shrinkage in S1 subsequently affected other regions of the brain that feed sensory information into the cortex, but more interestingly, it also altered the body maps in these subcortical brain regions, overturning the idea that once established, these brain regions could only be changed by external experience. They dubbed this previously unknown phenomenon "top down plasticity."

"Top-down plasticity complements in a reverse fashion the well-known bottom-up plasticity induced by sensory deprivation," says O'Leary.

Normally, the body map in S1 cortex mirrors similar body maps in the thalamus, the main switching station for sensory information, which transmits somatosensation from the body periphery to the S1 cortex through outgoing neural "wires" known as axons. In the newly discovered top-down plasticity, when S1 was made smaller, the sensory thalamus that feeds into it is also subsequently reduced in size.

But the story has a more intriguing twist. "According to our present knowledge about the development of sensory circuits, we anticipated that all body representations in S1 would be equally affected when S1 was made smaller," says O'Leary. "It was a surprise to us that not only was the body map smaller, but some parts of it were completely missing. The specific deletion of parts of the body map is controlled by exaggerated competition for cortical resources dictated by S1 size and played out between the connections from thalamic neurons that form these maps in the cortex."

"To put it in lay terms, 'If you snooze, you lose,'" adds Zembrzycki. "Axons that differentiate later are preferentially excluded from the smaller S1 leading to the specific deletion of the body parts that they represent."

"The essential point about top-down plasticity is that altering the size and patterning of sensory cortex results in matching alterations in sensory thalamus through the selective death of thalamic neurons that normally would represent body parts absent from S1," Zembrzycki adds. "Therefore, a downstream part of the brain is repatterned to match the architecture in S1, resulting in aberrant wiring of the brain that has important implications for sensory perception and function. For example, autistics have very robust abnormalities in touching and other features of somatosensation."

O'Leary and Zembrzycki believe that this process provides significant insights into the development of autism and other neural disorders. "One of the hallmarks of the autistic brain early in development is the area profile seems to be abnormal, with for example, the frontal cortex being enlarged, while the overall cortex keeps its normal size," says O'Leary. "It is implicit then that other cortical areas positioned behind the frontal areas, such as S1, would be reduced in size, and thalamus would exhibit defects that match those in sensory cortex, as has been shown to be the case in autistic patients."

Other researchers on the study were Shen-Ju Chou of the Salk Institute and Ruth Ashery-Padan and Anastassia Stoykova of the Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.

This work was supported by the National Institutes of Health and the Vincent J.Coates Chair of Molecular Neurobiology.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Kat Kearney | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>