Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can't focus? Maybe it's the wrong time of month

27.09.2010
New Concordia research links hormones with attention and learning

Feeling a little sluggish and having trouble concentrating? Hormones might be to blame according to new research from Concordia University published in the journal Brain and Cognition. The study shows that high estrogen levels are associated with an inability to pay attention and learn – the first such paper to report how this impediment can be due to a direct effect of the hormone on mature brain structures.

"Although estrogen is known to play a significant role in learning and memory, there has been no clear consensus on its effect," says senior author Wayne Brake, an associate professor at Concordia's Center for Studies in Behavioural Neurobiology. "Our findings, using a well-established model of learning called latent inhibition, shows conclusively that high estrogen levels inhibit the cognitive ability in female rodents."

Human females have high estrogen levels while they are ovulating. These high levels have also been shown to interfere with women's ability to pay attention.

"The similarity between human studies and our findings suggest that we have a good model for human learning," says first author Matthew Quinlan, a former Concordia doctoral student now a lecturer at California State University San Bernadino. "Rodent research is invaluable to us. We can tease out the real contributors and their respective roles in these systems. It is much more difficult to conduct comparable experiments in humans."

Latent inhibition: A model of learning

Latent inhibition is observed in many species and is believed to be the important part of learning, which enables individuals to interact successfully in their environment. It is a test of new memory formation.

In the Brake protocol, rats received a pre-exposure phase during which they were repeatedly exposed to a tone, with no consequence. Once they became used to this tone and ignored it, the test dynamics changed and another stimulus was linked to the tone. Rats with low levels of estrogen quickly learned that the tone was associated with the new stimulus whereas those with higher levels of estrogen took longer to form this memory.

"We only observed this effect in adult female rats," says Brake. "This and our other findings indicate that estrogen directly effects the brain, perhaps by interfering with brain signaling molecules. Our study helps clear up the controversy about the effects of estrogen, the next step is to look at how this occurs."

Partners in research:
This study was funded by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation and the Fonds de la recherche en santé Québec.
About the study:
"Latent inhibition is affected by phase of estrous cycle in female rats," published in the journal Brain and Cognition, was authored by Matthew G. Quinlan, Andrew Duncan, Catherine Loiselle, Nicole Graffe and Wayne G. Brake of Concordia University.
On the Web:
Cited Brain and Cognition study: http://tinyurl.com/29fufg7
Concordia University: www.concordia.ca
Concordia Center for Studies in Behavioral Neurobiology: http://csbn.concordia.ca
Media contact:
Sylvain-Jacques Desjardins
Senior advisor, media relations
Concordia University
Phone: 514-848-2424, ext. 5068
Email: s-j.desjardins@concordia.ca
Concordia news: http://now.concordia.ca
Twitter: http://twitter.com/concordianews

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.concordia.ca

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>