Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can't focus? Maybe it's the wrong time of month

27.09.2010
New Concordia research links hormones with attention and learning

Feeling a little sluggish and having trouble concentrating? Hormones might be to blame according to new research from Concordia University published in the journal Brain and Cognition. The study shows that high estrogen levels are associated with an inability to pay attention and learn – the first such paper to report how this impediment can be due to a direct effect of the hormone on mature brain structures.

"Although estrogen is known to play a significant role in learning and memory, there has been no clear consensus on its effect," says senior author Wayne Brake, an associate professor at Concordia's Center for Studies in Behavioural Neurobiology. "Our findings, using a well-established model of learning called latent inhibition, shows conclusively that high estrogen levels inhibit the cognitive ability in female rodents."

Human females have high estrogen levels while they are ovulating. These high levels have also been shown to interfere with women's ability to pay attention.

"The similarity between human studies and our findings suggest that we have a good model for human learning," says first author Matthew Quinlan, a former Concordia doctoral student now a lecturer at California State University San Bernadino. "Rodent research is invaluable to us. We can tease out the real contributors and their respective roles in these systems. It is much more difficult to conduct comparable experiments in humans."

Latent inhibition: A model of learning

Latent inhibition is observed in many species and is believed to be the important part of learning, which enables individuals to interact successfully in their environment. It is a test of new memory formation.

In the Brake protocol, rats received a pre-exposure phase during which they were repeatedly exposed to a tone, with no consequence. Once they became used to this tone and ignored it, the test dynamics changed and another stimulus was linked to the tone. Rats with low levels of estrogen quickly learned that the tone was associated with the new stimulus whereas those with higher levels of estrogen took longer to form this memory.

"We only observed this effect in adult female rats," says Brake. "This and our other findings indicate that estrogen directly effects the brain, perhaps by interfering with brain signaling molecules. Our study helps clear up the controversy about the effects of estrogen, the next step is to look at how this occurs."

Partners in research:
This study was funded by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation and the Fonds de la recherche en santé Québec.
About the study:
"Latent inhibition is affected by phase of estrous cycle in female rats," published in the journal Brain and Cognition, was authored by Matthew G. Quinlan, Andrew Duncan, Catherine Loiselle, Nicole Graffe and Wayne G. Brake of Concordia University.
On the Web:
Cited Brain and Cognition study: http://tinyurl.com/29fufg7
Concordia University: www.concordia.ca
Concordia Center for Studies in Behavioral Neurobiology: http://csbn.concordia.ca
Media contact:
Sylvain-Jacques Desjardins
Senior advisor, media relations
Concordia University
Phone: 514-848-2424, ext. 5068
Email: s-j.desjardins@concordia.ca
Concordia news: http://now.concordia.ca
Twitter: http://twitter.com/concordianews

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.concordia.ca

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>