Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Speed gene' in modern racehorses originated from British mare 300 years ago, scientists say

25.01.2012
Scientists have traced the origin of the 'speed gene' in Thoroughbred racehorses back to a single British mare that lived in the United Kingdom around 300 years ago, according to findings published in the scientific journal Nature Communications.

The origin of the 'speed gene' (C type myostatin gene variant) was revealed by analysing DNA from hundreds of horses, including DNA extracted from the skeletal remains of 12 celebrated Thoroughbred stallions born between 1764 and 1930.

"Changes in racing since the foundation of the Thoroughbred have shaped the distribution of 'speed gene' types over time and in different racing regions," explained Dr Emmeline Hill, the senior author of the study, and a genomics scientist at the School of Agriculture and Food Science, University College Dublin.

"But we have been able to identify that the original 'speed gene' variant entered the Thoroughbred from a single founder, which was most likely a British mare about 300 years ago, when local British horse types were the preeminent racing horses, prior to the formal foundation of the Thoroughbred racehorse."

The international scientific team led by scientists from University College Dublin (UCD), Equinome Ltd., and the University of Cambridge, have traced all modern variants of the original 'speed gene' to the legendary Nearctic (1954-1973), and attribute the wider expansion of these variants to Northern Dancer (1961-1990), the son of Nearctic, and one of the most influential stallions of modern times.

"Having first identified the 'speed gene' in 2010, we decided to see if we could trace the origin of the gene variant using population genetics coupled with pedigree analysis. We wanted to understand where speed in the Thoroughbred came from."

Dr Hill is also a co-founder of Equinome, a UCD spin-out company headquartered at NovaUCD, which has developed The Equinome Speed Gene Test. This test is currently being used by the global bloodstock and racing industry to identify the optimum racing distance for individual Thoroughbred horses.

"We traced the economically valuable gene variant by determining 'speed gene' type in almost 600 horses from 22 Eurasian and North American horse breeds, museum bone and tooth specimens from 12 legendary Thoroughbred stallions, 330 elite performing modern Thoroughbreds from 3 continents, 40 donkeys and two zebras" added Dr Hill.

According to co-author Dr Mim Bower from the University of Cambridge, UK, "The findings point to a British mare as the most likely single founder of the original 'speed gene' because one of the lines of evidence from the research demonstrated that the prize stallions of the 17th and 18th centuries had two copies of the T type speed gene variant (T:T) which is linked to greater stamina."

"At this time in the history of horse racing, races were between two horses competed over multiple heats, at distances of between two to four miles, and repeated until a horse had won the event twice or 'distanced' the opponent. Horses did not race until they were five or six years old, and then only two or three times in their lives. This is consistent with these horses being T:T types.", said Dr Bower

An increased premium on speed and precocity developed as two-year-old races became popular during the last century, and in many regions of the world, these preferences remain to this day.

Dr Hill explained, "For example, in Australia, the myostatin 'speed gene' type (C:C), which is best suited to fast, short-distance, sprint races, is more common and there is a market driven demand for horses with at least one copy of the C type gene variant."

"This just goes to show the power breeders have to shape the genetic make-up of their horses. Decisions regarding the race pattern in each racing jurisdiction and the commercial demand for certain types will also rapidly influence the genetic make-up of the population."

To identify where the C type gene variant originated, the researchers analysed DNA samples from more than 20 horse breeds that included representatives of local British and Irish horses, from where female Thoroughbred lineages derive, and exotic eastern populations from where male Thoroughbred lineages derive.

The study identified the Shetland breed as having the highest frequency of the C type gene variant. The Shetland represents local British horse types, which were the preeminent racing horses prior to the formal foundation of the Thoroughbred.

By comparing the diversity of the chromosomes around the C and T type gene variants researchers found only a single C type compared to 11 different T type gene variants, meaning that the 'speed gene' entered the Thoroughbred just once.

"The results show that the 'speed gene' entered the Thoroughbred from a single founder, which was most likely a British mare about 300 years ago when local British horse types were the preeminent racing horses, prior to the formal foundation of the Thoroughbred racehorse." said Dr Hill.

Collaborators in the study were scientists from Trinity College Dublin, the Russian Academy of Sciences and the Swedish University of Agricultural Sciences. The research was supported by grants from The Horserace Betting Levy Board, Leverhulme Trust, Cambridge Overseas Trust and Science Foundation Ireland.

"I am very grateful for the support of our research. Ireland has been renowned as a leader in the production of world class racehorses for generations, and continues to lead now in the application of new scientific technologies in breeding and racing. We are seeing a shift globally to scientifically informed decision-making." said Dr Hill.

Dominic Martella | EurekAlert!
Further information:
http://www.ucd.ie

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>