Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Spaghetti' scaffolding could help grow skin in labs

Scientists are developing new scaffolding technology which could be used to grow tissues such as skin, nerves and cartilage using 3D spaghetti-like structures. Their research is highlighted in the latest issue of Business, the quarterly highlights magazine of the Biotechnology and Biological Sciences Research Council (BBSRC).

The new structures are being developed by scientists from the University of Bristol, using proteins from alpha helices – one of the fundamental ways that strings of amino acids fold - to create long fibres called hydrogelating self assembling fibres (hSAFs), or hydrogels. By learning how to build hSAFs from scratch, the researchers are starting to understand how they might use these 3D scaffolds to support the growth of nerves, blood vessels and cartilage tailored to the needs of individual patients.

Professor Dek Woolfson who is leading the work, explains: "To make hydrogels you need something long and thin that will interact with copies of itself and form meshes, but is also water soluble. However rather than using natural proteins, which are complex, we've tried to make something as simple as possible that we fully understand using peptides and self assembling proteins."

Currently, hydrogel scaffold structures, made either synthetically or from natural resources such as seaweed, are used in everyday products from shampoos to drug capsules.

But explains, Professor Woolfson, the hSAFs his team are developing will have different uses: "The downside of using peptides or proteins is that they are expensive compared with synthetic polymers. We are almost certainly looking at high end biomedical applications, generating cells which can be used in living systems. Potential medical benefits include growing tissues such as skin, nerves and cartilage in the laboratory which will advance basic research and may lead to biomedical applications like speeding up wound healing and grafting."

Commenting on the research, BBSRC Chief Executive Professor Doug Kell, said: "This research highlights the importance of understanding how things work at a micro level and then looking at different ways to apply this knowledge to create effective solutions for tackling everyday problems, in this instance, translating basic bioscience into technology which could have very real clinical benefits for patients."

This research is featured in the latest edition of Business, the quarterly magazine of BBSRC.


BBSRC Media Office
Tracey Jewitt, Tel: 01793 414694, email:
Nancy Mendoza, Tel: 01793 413355, email:
Matt Goode, Tel: 01793 413299, email:
This research features in the Autumn 2009 issue of Business, BBSRC's research highlights magazine.
To read the full article, visit:



The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £450 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. BBSRC carries out its mission by funding internationally competitive research, providing training in the biosciences, fostering opportunities for knowledge transfer and innovation and promoting interaction with the public and other stakeholders on issues of scientific interest in universities, centres and institutes.

The Babraham Institute, Institute for Animal Health, Institute of Food Research, John Innes Centre and Rothamsted Research are Institutes of BBSRC. The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.

Tracey Jewitt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>