Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Sloppier copier' surprisingly efficient

17.07.2009
Article in Nature solves 3 major puzzles about the workings of a famous enzyme involved in DNA repair

The "sloppier copier" discovered by USC biologists is also the best sixth man in the DNA repair game, an article in the journal Nature shows.

The enzyme known as DNA polymerase V (pol V) comes in when a cell's DNA is reeling from radiation damage or other serious blows. Pol V copies the damaged DNA as best it can – saving the life of the bacterial cell at the cost of adding hundreds of random mutations.

The July 16 Nature study reveals pol V's key attributes: economy of motion and quickness to engage.

The study also solves two other stubborn mysteries about the mechanics of DNA repair: the exact composition of the active form of pol V and the crucial role of a protein filament, known as RecA*, that is always present around DNA repair sites, but was never shown to be directly involved.

The three findings together describe an exquisitely efficient process.

"It's a beautiful mechanism for how cells conserve energy," said first author Qingfei Jiang, a graduate student of senior author Myron Goodman, professor of biological sciences and chemistry at USC College.

Cells multiply by division, which starts with the copying of DNA. Pol V kicks in when a section of damaged DNA baffles the enzymes normally involved in copying.

In experiments with E. coli, Jiang and Goodman showed that the activation signal for pol V is the transfer to the enzyme of two key molecules from RecA*.

RecA* is a nucleoprotein filament: a long line of proteins bound to single-stranded DNA. The molecules that RecA* transfers to pol V are ATP, the energy factory of the cell, and a single RecA* protein among the many that make up the filament.

The copying of damaged DNA is formally called "translesion synthesis," or TLS.

"What is RecA* doing?" had been a vexing question in the field for two decades, since the discovery that the filament was necessary for DNA repair. No one, however, could figure out why.

Goodman's group showed that the role of RecA* is limited but direct: It is needed to donate molecules to activate pol V, but it does not participate in damage-induced DNA copying and does not even need to be next to the repair site.

Instead, RecA* acts as a fuel station to put pol V to action.

With the two extra molecules attached, pol V copies the damaged DNA. As soon as it reaches the end of the damaged section, it falls off and immediately deactivates.

Pol V then waits to be called again.

In addition to saving energy, the process prevents the mistake-prone copier from trying to "repair" normal DNA.

"All the other DNA polymerases [enzymes], when they copy DNA, they go first from one and then to another DNA and copy it. Not this baby. It has to be reactivated," Goodman said.

"It's a utility player. It's the guy who does the tough jobs."

He added that the discovery "explains one of the key ways that you get mutations when you damage DNA."

Human cells use similar enzymes, Goodman said.

The study of mutations holds fundamental relevance for medicine, evolutionary biology, aging research and other fields.

Goodman's research group discovered pol V in 1999. The "sloppier copier" nickname, coined by USC science writer Eric Mankin, has since been adopted widely.

At the time, Goodman described pol V as a "last-ditch cell defense" that averts death at the cost of frequent copying mistakes, which show up as mutations in the cell's DNA.

Ironically, the sloppier copier may do more for the long-term success of the species than its accurate cousins. Some of the accidental mutations are likely to be helpful. Cells with those mutations will adapt better to their environment, and the mutations will spread through the species by natural selection.

Goodman and Jiang's co-authors were Kiyonobu Karata and Roger Woodgate of the National Institute of Child Health and Human Development, and Michael Cox of the University of Wisconsin-Madison.

The National Institutes of Health funded the research.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>