Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Sloppier copier' surprisingly efficient

17.07.2009
Article in Nature solves 3 major puzzles about the workings of a famous enzyme involved in DNA repair

The "sloppier copier" discovered by USC biologists is also the best sixth man in the DNA repair game, an article in the journal Nature shows.

The enzyme known as DNA polymerase V (pol V) comes in when a cell's DNA is reeling from radiation damage or other serious blows. Pol V copies the damaged DNA as best it can – saving the life of the bacterial cell at the cost of adding hundreds of random mutations.

The July 16 Nature study reveals pol V's key attributes: economy of motion and quickness to engage.

The study also solves two other stubborn mysteries about the mechanics of DNA repair: the exact composition of the active form of pol V and the crucial role of a protein filament, known as RecA*, that is always present around DNA repair sites, but was never shown to be directly involved.

The three findings together describe an exquisitely efficient process.

"It's a beautiful mechanism for how cells conserve energy," said first author Qingfei Jiang, a graduate student of senior author Myron Goodman, professor of biological sciences and chemistry at USC College.

Cells multiply by division, which starts with the copying of DNA. Pol V kicks in when a section of damaged DNA baffles the enzymes normally involved in copying.

In experiments with E. coli, Jiang and Goodman showed that the activation signal for pol V is the transfer to the enzyme of two key molecules from RecA*.

RecA* is a nucleoprotein filament: a long line of proteins bound to single-stranded DNA. The molecules that RecA* transfers to pol V are ATP, the energy factory of the cell, and a single RecA* protein among the many that make up the filament.

The copying of damaged DNA is formally called "translesion synthesis," or TLS.

"What is RecA* doing?" had been a vexing question in the field for two decades, since the discovery that the filament was necessary for DNA repair. No one, however, could figure out why.

Goodman's group showed that the role of RecA* is limited but direct: It is needed to donate molecules to activate pol V, but it does not participate in damage-induced DNA copying and does not even need to be next to the repair site.

Instead, RecA* acts as a fuel station to put pol V to action.

With the two extra molecules attached, pol V copies the damaged DNA. As soon as it reaches the end of the damaged section, it falls off and immediately deactivates.

Pol V then waits to be called again.

In addition to saving energy, the process prevents the mistake-prone copier from trying to "repair" normal DNA.

"All the other DNA polymerases [enzymes], when they copy DNA, they go first from one and then to another DNA and copy it. Not this baby. It has to be reactivated," Goodman said.

"It's a utility player. It's the guy who does the tough jobs."

He added that the discovery "explains one of the key ways that you get mutations when you damage DNA."

Human cells use similar enzymes, Goodman said.

The study of mutations holds fundamental relevance for medicine, evolutionary biology, aging research and other fields.

Goodman's research group discovered pol V in 1999. The "sloppier copier" nickname, coined by USC science writer Eric Mankin, has since been adopted widely.

At the time, Goodman described pol V as a "last-ditch cell defense" that averts death at the cost of frequent copying mistakes, which show up as mutations in the cell's DNA.

Ironically, the sloppier copier may do more for the long-term success of the species than its accurate cousins. Some of the accidental mutations are likely to be helpful. Cells with those mutations will adapt better to their environment, and the mutations will spread through the species by natural selection.

Goodman and Jiang's co-authors were Kiyonobu Karata and Roger Woodgate of the National Institute of Child Health and Human Development, and Michael Cox of the University of Wisconsin-Madison.

The National Institutes of Health funded the research.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>