Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Safety valve' protects photosynthesis from too much light

27.11.2009
Photosynthetic organisms need to cope with a wide range of light intensities, which can change over timescales of seconds to minutes. Too much light can damage the photosynthetic machinery and cause cell death. Scientists at the Carnegie Institution were part of a team that found that specific proteins in algae can act as a safety valve to dissipate excess absorbed light energy before it can wreak havoc in cells.

The research, performed mostly by Graham Peers in the laboratory of Krishna Niyogi from the University of California, Berkeley, included researchers at the University of Münster, Germany, and used a mutant strain of the single-celled green alga Chlamydomonas reinhardtii, originally isolated at the Carnegie Institution, to show that a specific protein of the light harvesting family of proteins plays a critical role in eliminating excess absorbed light energy.

A mutant lacking this protein, designated LHCSR, suffered severely when exposed to fluctuating light conditions. "Photosynthetic organisms must be able to manage absorbed light energy," says study co-author Arthur Grossman of Carnegie's Department of Plant Biology, "and the LHCSR proteins appear to be critical for algae to eliminate absorbed light energy as heat as light levels in the environment fluctuate, becoming potentially toxic."

Grossman points out that photosynthetic organisms have developed a number of different mechanisms for managing the absorption of light energy and that these different mechanisms may be tailored to the diversity of environments in which organisms have evolved. Some have evolved in deserts where both light levels and temperatures can be very high while others have evolved in alpine environments where the light levels can be very high and temperatures very low.

"As we understand more about the ways in which the environment impacts the evolution of the photosynthetic machinery, we may be able to introduce specific mechanisms into plants that allow them to better manage absorbed light energy, which in turn would let them survive harsher environmental conditions" Grossman says, "which would have obvious benefits for agriculture."

He also notes the current interest in using algae to generate biofuels, and the possibility of cultivating algae in deserts, where solar input can be extremely high. As he states, "If we are going to attempt this we have to make sure that we use the right algae that can thrive and produce oils at high levels under harsh environmental conditions. It's possible that we can also tailor various features of the photosynthetic machinery to let algae use light energy more efficiently and suffer less damage under extremely high light and temperature conditions, but I would emphasize that there are many extreme challenges associated with the creation of such robust, commercially viable strains."

The research appears in the 26 November issue of Nature.

The Carnegie Institution (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Arthur Grossman | EurekAlert!
Further information:
http://www.CIW.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>