Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Safety valve' protects photosynthesis from too much light

27.11.2009
Photosynthetic organisms need to cope with a wide range of light intensities, which can change over timescales of seconds to minutes. Too much light can damage the photosynthetic machinery and cause cell death. Scientists at the Carnegie Institution were part of a team that found that specific proteins in algae can act as a safety valve to dissipate excess absorbed light energy before it can wreak havoc in cells.

The research, performed mostly by Graham Peers in the laboratory of Krishna Niyogi from the University of California, Berkeley, included researchers at the University of Münster, Germany, and used a mutant strain of the single-celled green alga Chlamydomonas reinhardtii, originally isolated at the Carnegie Institution, to show that a specific protein of the light harvesting family of proteins plays a critical role in eliminating excess absorbed light energy.

A mutant lacking this protein, designated LHCSR, suffered severely when exposed to fluctuating light conditions. "Photosynthetic organisms must be able to manage absorbed light energy," says study co-author Arthur Grossman of Carnegie's Department of Plant Biology, "and the LHCSR proteins appear to be critical for algae to eliminate absorbed light energy as heat as light levels in the environment fluctuate, becoming potentially toxic."

Grossman points out that photosynthetic organisms have developed a number of different mechanisms for managing the absorption of light energy and that these different mechanisms may be tailored to the diversity of environments in which organisms have evolved. Some have evolved in deserts where both light levels and temperatures can be very high while others have evolved in alpine environments where the light levels can be very high and temperatures very low.

"As we understand more about the ways in which the environment impacts the evolution of the photosynthetic machinery, we may be able to introduce specific mechanisms into plants that allow them to better manage absorbed light energy, which in turn would let them survive harsher environmental conditions" Grossman says, "which would have obvious benefits for agriculture."

He also notes the current interest in using algae to generate biofuels, and the possibility of cultivating algae in deserts, where solar input can be extremely high. As he states, "If we are going to attempt this we have to make sure that we use the right algae that can thrive and produce oils at high levels under harsh environmental conditions. It's possible that we can also tailor various features of the photosynthetic machinery to let algae use light energy more efficiently and suffer less damage under extremely high light and temperature conditions, but I would emphasize that there are many extreme challenges associated with the creation of such robust, commercially viable strains."

The research appears in the 26 November issue of Nature.

The Carnegie Institution (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Arthur Grossman | EurekAlert!
Further information:
http://www.CIW.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>