Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let's do the twist: Spiral proteins are efficient gene delivery agents

16.12.2011
Clinical gene therapy may be one step closer, thanks to a new twist on an old class of molecules.

A group of University of Illinois researchers, led by professors Jianjun Cheng and Fei Wang, have demonstrated that short spiral-shaped proteins can efficiently deliver DNA segments to cells. The team published its work in the journal Angewandte Chemie.

“The main idea is these are new materials that could potentially be used for clinical gene therapy,” said Cheng, a professor of materials science and engineering, of chemistry and of bioengineering.

Researchers have been exploring two main pathways for gene delivery: modified viruses and nonviral agents such as synthetic polymers or lipids. The challenge has been to address both toxicity and efficiency. Polypeptides, or short protein chains, are attractive materials because they are biocompatible, fine-tunable and small.

“There are very good in vitro transfection agents available, but we cannot use them in vivo because of their toxicity or because some of the complexes are too large,” Cheng said. “Using our polypeptides, we can control the size down to the 200 nanometer range, which makes it a very interesting delivery system for in vivo applications.”

A polypeptide called poly-L-lysine (PLL) was an early contender in gene delivery studies. PLL has positively charged side chains – molecular structures that stem from each amino acid link in the polypeptide chain – so it is soluble in the watery cellular environment.

However, PLL gradually fell into disuse because of its limited ability to deliver genes to the inside of cells, a process called transfection, and its high toxicity. Cheng postulated that PLL’s low efficiency could be a function of its globular shape, as polypeptides with charged side chains tend to adopt a random coil structure, instead of a more orderly spiral helix.

“We never studied the connections of conformation with transfection efficiency, because we were never able to synthetically make materials containing both cationic charge and a high percentage of helical structures,” Cheng said. “This paper demonstrated for the first time that helicity has a huge impact on transfection efficiencies.”

Earlier this year, Cheng’s group developed a method of making helical polypeptides with positively charged side chains. To test whether a helical polypeptide could be an efficient gene delivery agent, the group assembled a library of 31 helical polypeptides that are stable over a broad pH range and can bond to DNA for delivery. Most of them outperformed PLL and a few outstripped a leading commercial agent called polyethyleneimine (PEI), notorious for its toxicity although it is highly efficient. The helical molecules even worked on some of the hardest cells to transfect: stem cells and fibroblast cells.

“People kind of gave up on polypeptide-based materials for gene deliveries because PLL had low efficiency and high toxicity,” Cheng said. “The polypeptide that we designed, synthesized and used in this study has very high efficiency and also well-controlled toxicities. With a modified helical polypeptide, we demonstrated that we can outperform many commercial agents.”

The polypeptides Cheng and his co-workers developed can adopt helical shapes because the side chains are longer, so that the positive charges do not interfere with the protein’s winding. The positive charges readily bind to negatively charged DNA, forming complexes that are internalized into cellular compartments called endosomes. The helical structures rupture the endosomal membranes, letting the DNA escape into the cell.

To confirm that the spiral polypeptide shape is the key to transfection, the researchers then synthesized two batches of the most efficient polypeptide: one batch with a helical shape, one with the usual random coil. The helical polypeptide far exceeded the random-coil polypeptide in both efficiency and stability.

“This demonstrates that the helicity is very important, because the polymer has exactly the same chemical makeup; the only difference is the structure,” said Cheng, who also is associated with the Institute for Genomic Biology and the Beckman Institute for Advanced Science and Technology, both at the U. of I.
Next, the researchers plan to further explore their helical polypeptides’ properties, especially their cell-penetrating abilities. They hope to control sequence and structure with precision for specific applications, including gene delivery, drug delivery, cell-membrane penetration and antimicrobial action.

The National Science Foundation and the National Institutes of Health supported this work. Fei Wang is a professor of cell and development biology and of bioengineering. Postdoctoral researchers Nathan Gabrielson, Lichen Yin and Dong Li and graduate student Hua Lu were co-authors of the paper.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>