Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's in the Genes: Research Pinpoints How Plants Know When to Flower

30.05.2012
Scientists believe they've pinpointed the last crucial piece of the 80-year-old puzzle of how plants "know" when to flower.

Determining the proper time to flower, important if a plant is to reproduce successfully, involves a sequence of molecular events, a plant's circadian clock and sunlight.

Understanding how flowering works in the simple plant used in this study – Arabidopsis – should lead to a better understanding of how the same genes work in more complex plants grown as crops such as rice, wheat and barley, according to Takato Imaizumi, a University of Washington assistant professor of biology and corresponding author of a paper in the May 25 issue of the journal Science.

"If we can regulate the timing of flowering, we might be able to increase crop yield by accelerating or delaying this. Knowing the mechanism gives us the tools to manipulate this," Imaizumi said. Along with food crops, the work might also lead to higher yields of plants grown for biofuels.

At specific times of year, flowering plants produce a protein known as FLOWERING LOCUS T in their leaves that induces flowering. Once this protein is made, it travels from the leaves to the shoot apex, a part of the plant where cells are undifferentiated, meaning they can either become leaves or flowers. At the shoot apex, this protein starts the molecular changes that send cells on the path to becoming flowers.

Changes in day length tell many organisms that the seasons are changing. It has long been known that plants use an internal time-keeping mechanism known as the circadian clock to measure changes in day length. Circadian clocks synchronize biological processes during 24-hour periods in people, animals, insects, plants and other organisms.

Imaizumi and the paper's co-authors investigated what's called the FKF1 protein, which they suspected was a key player in the mechanism by which plants recognize seasonal change and know when to flower. FKF1 protein is a photoreceptor, meaning it is activated by sunlight.

"The FKF1 photoreceptor protein we've been working on is expressed in the late afternoon every day, and is very tightly regulated by the plant's circadian clock," Imaizumi said. "When this protein is expressed during days that are short, this protein cannot be activated, as there is no daylight in the late afternoon. When this protein is expressed during a longer day, this photoreceptor makes use of the light and activates the flowering mechanisms involving FLOWERING LOCUS T. The circadian clock regulates the timing of the specific photoreceptor for flowering. That is how plants sense differences in day length."

This system keeps plants from flowering when it's a poor time to reproduce, such as the dead of winter when days are short and nights are long.

The new findings come from work with the plant Arabidopsis, a small plant in the mustard family that's often used in genetic research. They validate predictions from a mathematical model of the mechanism that causes Arabidopsis to flower that was developed by Andrew Millar, a University of Edinburgh professor of biology and co-author of the paper.

"Our mathematical model helped us to understand the operating principles of the plants' day-length sensor," Millar said. "Those principles will hold true in other plants, like rice, where the crop's day-length response is one of the factors that limits where farmers can obtain good harvests. It's that same day-length response that needs controlled lighting for laying chickens and fish farms, so it's just as important to understand this response in animals.

"The proteins involved in animals are not yet so well understood as they are in plants but we expect the same principles that we've learned from these studies to apply."

First author on the paper is Young Hun Song, a postdoctoral researcher in Imaizumi's UW lab. The other co-authors are Benjamin To, who was a UW undergraduate student when this work was being conducted, and Robert Smith, a University of Edinburgh graduate student. The work was funded by the National Institutes of Health, and the United Kingdom's Biotechnology and Biological Sciences Research Council.

For more information:
Imaizumi, 206-543-8709, takato@uw.edu

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>