Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Rock-breathing' bacteria could generate electricity and clean up oil spills

15.12.2009
A discovery by scientists at the University of East Anglia (UEA) could contribute to the development of systems that use domestic or agricultural waste to generate clean electricity.

Published today by the leading scientific journal, Proceedings of the National Academy of Sciences (PNAS), the researchers have demonstrated for the first time the mechanism by which some bacteria survive by 'breathing rocks'.

The findings could be applied to help in the development of new microbe-based technologies such as fuel cells, or 'bio-batteries', powered by animal or human waste, and agents to clean up areas polluted by oil or uranium.

"This is an exciting advance in our understanding of bacterial processes in the Earth's sub-surfaces," said Prof David Richardson, of UEA's School of Biological Sciences, who is leading the project.

"It will also have important biotechnological impacts. There is potential for these rock-breathing bacteria to be used to clean-up environments contaminated with toxic organic pollutants such as oil or radioactive metals such as uranium. Use of these bacteria in microbial fuel-cells powered by sewerage or cow manure is also being explored."

The vast proportion of the world's habitable environments is populated by micro-organisms which, unlike humans, can survive without oxygen. Some of these micro-organisms are bacteria living deep in the Earth's subsurface and surviving by 'breathing rocks' – especially minerals of iron.

Iron respiration is one of the most common respiratory processes in oxygen-free habitats and therefore has wide environmental significance.

Prof Richardson said: "We discovered that the bacteria can construct tiny biological wires that extend through the cell walls and allow the organism to directly contact, and conduct electrons to, a mineral. This means that the bacteria can release electrical charge from inside the cell into the mineral, much like the earth wire on a household plug."

'Characterization of an electron conduit between bacteria and the extracellular environment' by R Hartshorne (UEA), C Reardon (Pacific Northwest National Laboratory), D Ross (Pennsylvania State University), J Nuester (Pennsylvania State University), T Clarke (UEA), A Gates (UEA), P Mills (UEA), J Fredrickson (Pacific Northwest National Laboratory), J Zachara (Pacific Northwest National Laboratory), L Shi (Pacific Northwest National Laboratory), A Beliaev (Pacific Northwest National Laboratory), M Marshall (Pacific Northwest National Laboratory), M Tien (Pennsylvania State University), S Brantley (Pennsylvania State University), J Butt (UEA) and D Richardson (UEA) is published on December 14 in the online early edition of PNAS.

Simon Dunford | EurekAlert!
Further information:
http://www.uea.ac.uk

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>