Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Rock-breathing' bacteria could generate electricity and clean up oil spills

15.12.2009
A discovery by scientists at the University of East Anglia (UEA) could contribute to the development of systems that use domestic or agricultural waste to generate clean electricity.

Published today by the leading scientific journal, Proceedings of the National Academy of Sciences (PNAS), the researchers have demonstrated for the first time the mechanism by which some bacteria survive by 'breathing rocks'.

The findings could be applied to help in the development of new microbe-based technologies such as fuel cells, or 'bio-batteries', powered by animal or human waste, and agents to clean up areas polluted by oil or uranium.

"This is an exciting advance in our understanding of bacterial processes in the Earth's sub-surfaces," said Prof David Richardson, of UEA's School of Biological Sciences, who is leading the project.

"It will also have important biotechnological impacts. There is potential for these rock-breathing bacteria to be used to clean-up environments contaminated with toxic organic pollutants such as oil or radioactive metals such as uranium. Use of these bacteria in microbial fuel-cells powered by sewerage or cow manure is also being explored."

The vast proportion of the world's habitable environments is populated by micro-organisms which, unlike humans, can survive without oxygen. Some of these micro-organisms are bacteria living deep in the Earth's subsurface and surviving by 'breathing rocks' – especially minerals of iron.

Iron respiration is one of the most common respiratory processes in oxygen-free habitats and therefore has wide environmental significance.

Prof Richardson said: "We discovered that the bacteria can construct tiny biological wires that extend through the cell walls and allow the organism to directly contact, and conduct electrons to, a mineral. This means that the bacteria can release electrical charge from inside the cell into the mineral, much like the earth wire on a household plug."

'Characterization of an electron conduit between bacteria and the extracellular environment' by R Hartshorne (UEA), C Reardon (Pacific Northwest National Laboratory), D Ross (Pennsylvania State University), J Nuester (Pennsylvania State University), T Clarke (UEA), A Gates (UEA), P Mills (UEA), J Fredrickson (Pacific Northwest National Laboratory), J Zachara (Pacific Northwest National Laboratory), L Shi (Pacific Northwest National Laboratory), A Beliaev (Pacific Northwest National Laboratory), M Marshall (Pacific Northwest National Laboratory), M Tien (Pennsylvania State University), S Brantley (Pennsylvania State University), J Butt (UEA) and D Richardson (UEA) is published on December 14 in the online early edition of PNAS.

Simon Dunford | EurekAlert!
Further information:
http://www.uea.ac.uk

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>