Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Relocation' plan of metastatic cancer cells uncovered by Stanford researchers

07.01.2009
Few things are as tiresome as house hunting and moving. Unfortunately, metastatic cancer cells have the relocation process down pat.

Tripping nimbly from one abode to another, these migrating cancer cells often prove far more deadly than the original tumor. Although little has been known about how these rogue cells choose where to put down roots, researchers at the Stanford University School of Medicine have now learned just how nefarious they are.

"Metastasis is not a passive process," said cancer biologist Amato Giaccia, PhD. "Cells don't just break off the primary tumor and lodge someplace else. Instead the cells actually secrete substances to precondition target tissue and make it more amenable to subsequent invasion."

In other words, the cells plan ahead by first sending molecular emissaries to orchestrate a breach in the body's natural defenses. Blocking this cascade of events in mice hobbled the cells' migration and prevented the metastatic cancer that developed in control animals. The researchers are hopeful that a similar tactic will be equally successful in humans.

Giaccia, the Jack, Lulu and Sam Willson Professor and professor of radiation oncology at Stanford, is the senior author of the research, which will be published in the Jan. 6 issue of Cancer Cell. Giaccia is also a member of the Stanford Cancer Center.

Scientists have known for some time that certain primary cancers metastasize preferentially to other organs — breast cancer often spreads to the lungs, for example. This is in part due to the patterns of blood flow in the body. They also knew that such future colonization sites, called pre-metastatic niches, harbor large numbers of cells derived from the bone marrow that somehow facilitate the cancer cells' entry. What they didn't know is how the bone-marrow-derived cells were summoned, and what, if any, role the primary tumor cells played in site selection.

Giaccia and his colleagues turned their attention to a substance that they had previously shown to be involved in metastasis: a protein called lysyl oxidase, or LOX. In healthy people, LOX works to strengthen developing connective tissue by modifying collagen and elastin, which are components of the extracellular matrix surrounding many organs. LOX expression increases in cancer cells deprived of oxygen — a condition called hypoxia that begins to occur when blood vessels fail to reach the inner cells of a growing tumor mass. Inhibiting LOX expression decreases tumor cell invasion and metastasis in the lungs of mice implanted with human breast cancer cells.

The researchers wanted to know how LOX affected metastasis. In the current study, they found that blocking LOX expression in the mice not only prevented metastases, it also kept the bone-marrow-derived cells necessary for niche formation from flocking to the site. When LOX was present, it accumulated in the lungs of the mice and was associated with one particular type of bone-marrow-derived cell known as a CD11b cell. CD11b cells, in turn, secreted a protein that breaks apart collagen and provides a handy entry point for the soon-to-arrive cancer cells.

"We've never really understood before how normal tissues are modified to allow metastases to target and successfully invade them," said Giaccia, who is hoping to devise a clinical trial to study the effect of blocking LOX activity in humans with primary cancers. "Now we know that LOX goes to the target tissue and attracts CD11b and other bone-derived cells to the pre-metastatic niche. If the mouse data is transferable to humans, and we have reasons to think it will be, we really believe way may have found an effective way to treat human disease."

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>