Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Relocation' plan of metastatic cancer cells uncovered by Stanford researchers

07.01.2009
Few things are as tiresome as house hunting and moving. Unfortunately, metastatic cancer cells have the relocation process down pat.

Tripping nimbly from one abode to another, these migrating cancer cells often prove far more deadly than the original tumor. Although little has been known about how these rogue cells choose where to put down roots, researchers at the Stanford University School of Medicine have now learned just how nefarious they are.

"Metastasis is not a passive process," said cancer biologist Amato Giaccia, PhD. "Cells don't just break off the primary tumor and lodge someplace else. Instead the cells actually secrete substances to precondition target tissue and make it more amenable to subsequent invasion."

In other words, the cells plan ahead by first sending molecular emissaries to orchestrate a breach in the body's natural defenses. Blocking this cascade of events in mice hobbled the cells' migration and prevented the metastatic cancer that developed in control animals. The researchers are hopeful that a similar tactic will be equally successful in humans.

Giaccia, the Jack, Lulu and Sam Willson Professor and professor of radiation oncology at Stanford, is the senior author of the research, which will be published in the Jan. 6 issue of Cancer Cell. Giaccia is also a member of the Stanford Cancer Center.

Scientists have known for some time that certain primary cancers metastasize preferentially to other organs — breast cancer often spreads to the lungs, for example. This is in part due to the patterns of blood flow in the body. They also knew that such future colonization sites, called pre-metastatic niches, harbor large numbers of cells derived from the bone marrow that somehow facilitate the cancer cells' entry. What they didn't know is how the bone-marrow-derived cells were summoned, and what, if any, role the primary tumor cells played in site selection.

Giaccia and his colleagues turned their attention to a substance that they had previously shown to be involved in metastasis: a protein called lysyl oxidase, or LOX. In healthy people, LOX works to strengthen developing connective tissue by modifying collagen and elastin, which are components of the extracellular matrix surrounding many organs. LOX expression increases in cancer cells deprived of oxygen — a condition called hypoxia that begins to occur when blood vessels fail to reach the inner cells of a growing tumor mass. Inhibiting LOX expression decreases tumor cell invasion and metastasis in the lungs of mice implanted with human breast cancer cells.

The researchers wanted to know how LOX affected metastasis. In the current study, they found that blocking LOX expression in the mice not only prevented metastases, it also kept the bone-marrow-derived cells necessary for niche formation from flocking to the site. When LOX was present, it accumulated in the lungs of the mice and was associated with one particular type of bone-marrow-derived cell known as a CD11b cell. CD11b cells, in turn, secreted a protein that breaks apart collagen and provides a handy entry point for the soon-to-arrive cancer cells.

"We've never really understood before how normal tissues are modified to allow metastases to target and successfully invade them," said Giaccia, who is hoping to devise a clinical trial to study the effect of blocking LOX activity in humans with primary cancers. "Now we know that LOX goes to the target tissue and attracts CD11b and other bone-derived cells to the pre-metastatic niche. If the mouse data is transferable to humans, and we have reasons to think it will be, we really believe way may have found an effective way to treat human disease."

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>