Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Random' cell movement is directed from within

21.10.2013
Clarified role of signal-relay proteins may help explain spread of cancer

Cell biologists at The Johns Hopkins University have teased apart two integral components of the machinery that causes cells to move. Their discovery shows that cellular projections, which act as hands to help a cell "crawl," are apparently always initiated by a network of message-relaying proteins inside the cell.


Diagram of a hand-like projection (left) versus the "ruffling" of the cell membrane (right) that occur with and without the activation of the messenger protein network.

Credit: Devreotes Lab

It was already known that in directional movement, the network is activated by sensor proteins on the cell's surface in response to external cues. They now know that in random movement, the messenger network is also causative: It can self-activate spontaneously.

Because cellular movement is necessary for everything from embryo development to wound healing to cancer metastasis, the work is expected to have wide-ranging implications for understanding and manipulating these biological processes, the researchers say. In fact, they note that defects in the messenger protein network have been linked to many types of cancer. The findings are summarized in a paper published online Oct. 20 in the journal Nature Cell Biology.

"It was previously thought that messenger proteins were only involved in directional movement: that without them, cells could only move randomly, through the spontaneous formation of these hand-like projections," says Peter Devreotes, Ph.D., professor and director of the Department of Cell Biology at the Johns Hopkins University School of Medicine. "Now we know that even random movement requires the activation of the messenger protein network."

According to Devreotes, a key component of a cell's machinery is a crisscrossing network of protein chains that wrap around the inside edge of the cell, giving it shape and structure and inspiring the name "cytoskeleton." To allow movement, this network must build itself up in a given area of the cell, pushing the cell's membrane outward and creating a hand-like projection that can "grip" the external environment and pull the cell forward.

The cytoskeleton, Devreotes says, takes orders from the messenger protein network, which is connected to sensor proteins on the outside of the cell. The sensors detect directional signals coming from other parts of the body and pass them on to the messenger proteins, which in turn call on the cytoskeletal proteins to create a projection in the right direction.

In their experiments, the Devreotes team sought to understand the relationship between each of these components. They began, he says, by bathing their cells in a drug that paralyzes the cytoskeleton. Not surprisingly, the cells wouldn't move, but the spontaneous responses of the messenger network still occurred.

Devreotes explains, "You can think of the cell as a row boat with several crewmen and a coxswain, sitting in the rear, steering the rudder and shouting at the crew to keep their movements in sync. If the oars are taken away (i.e., a paralyzed cytoskeleton), the coxswain can yell at the crew as much as he wants but the boat won't move."

Using a combination of genetic and imaging techniques, the team then incapacitated the other components of the system one by one and watched what happened. Inhibiting the messenger proteins (the coxswain) showed that the cytoskeleton has an intrinsic rhythm that "ruffles" the cell membrane every 10 seconds, but there were no projections created, so the cells didn't move. "It's as if the crew can still row without the coxswain but each person is rowing in a different direction so the boat just stays where it is," says Chuan-Hsiang Huang, a co-author of the study.

The team expected that when they removed the sensor proteins they would see no movement, based on the old idea that both random and directional cell movement required signaling from these proteins. However, they found instead that the messenger network is "excitable." That is, without the sensor proteins or external cues, the messenger proteins can still work on their own, telling the cytoskeleton to create projections here or there, moving the cells about randomly. "This situation could be compared to a boat without a rudder. The coxswain is there to coordinate the rowing of the crew so the boat does move, but not in any specific direction," explained co-author Ming Tang.

Devreotes says the most exciting implications of this research are those relevant to cancer metastasis. "Several of the messenger proteins that we studied are found in higher quantities during cancer progression, and it is likely that the resulting changes in cell movement are involved in the advancement of the disease," he says. "We now know that we have to create drugs that target the messenger proteins (not just the sensor proteins) in order to entirely immobilize tumor cells."

The other authors of the report are Changji Shi and Pablo Iglesias of The Johns Hopkins University.

This work was supported by grants from the National Institute of General Medical Sciences (GM28007, GM34933, GM71920) and the Damon Runyon Cancer Research Foundation.

On the Web:

Link to article: http://dx.doi.org/10.1038/ncb2859

Devreotes Lab: http://www.hopkinsmedicine.org/cellbio/devreotes/

Media Contacts:

Catherine Kolf
443-287-2251
ckolf@jhmi.edu
Vanessa McMains
410-502-9410
vmcmain1@jhmi.edu
Shawna Williams
410-955-8236
shawna@jhmi.edu

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>