Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Random' cell movement is directed from within

21.10.2013
Clarified role of signal-relay proteins may help explain spread of cancer

Cell biologists at The Johns Hopkins University have teased apart two integral components of the machinery that causes cells to move. Their discovery shows that cellular projections, which act as hands to help a cell "crawl," are apparently always initiated by a network of message-relaying proteins inside the cell.


Diagram of a hand-like projection (left) versus the "ruffling" of the cell membrane (right) that occur with and without the activation of the messenger protein network.

Credit: Devreotes Lab

It was already known that in directional movement, the network is activated by sensor proteins on the cell's surface in response to external cues. They now know that in random movement, the messenger network is also causative: It can self-activate spontaneously.

Because cellular movement is necessary for everything from embryo development to wound healing to cancer metastasis, the work is expected to have wide-ranging implications for understanding and manipulating these biological processes, the researchers say. In fact, they note that defects in the messenger protein network have been linked to many types of cancer. The findings are summarized in a paper published online Oct. 20 in the journal Nature Cell Biology.

"It was previously thought that messenger proteins were only involved in directional movement: that without them, cells could only move randomly, through the spontaneous formation of these hand-like projections," says Peter Devreotes, Ph.D., professor and director of the Department of Cell Biology at the Johns Hopkins University School of Medicine. "Now we know that even random movement requires the activation of the messenger protein network."

According to Devreotes, a key component of a cell's machinery is a crisscrossing network of protein chains that wrap around the inside edge of the cell, giving it shape and structure and inspiring the name "cytoskeleton." To allow movement, this network must build itself up in a given area of the cell, pushing the cell's membrane outward and creating a hand-like projection that can "grip" the external environment and pull the cell forward.

The cytoskeleton, Devreotes says, takes orders from the messenger protein network, which is connected to sensor proteins on the outside of the cell. The sensors detect directional signals coming from other parts of the body and pass them on to the messenger proteins, which in turn call on the cytoskeletal proteins to create a projection in the right direction.

In their experiments, the Devreotes team sought to understand the relationship between each of these components. They began, he says, by bathing their cells in a drug that paralyzes the cytoskeleton. Not surprisingly, the cells wouldn't move, but the spontaneous responses of the messenger network still occurred.

Devreotes explains, "You can think of the cell as a row boat with several crewmen and a coxswain, sitting in the rear, steering the rudder and shouting at the crew to keep their movements in sync. If the oars are taken away (i.e., a paralyzed cytoskeleton), the coxswain can yell at the crew as much as he wants but the boat won't move."

Using a combination of genetic and imaging techniques, the team then incapacitated the other components of the system one by one and watched what happened. Inhibiting the messenger proteins (the coxswain) showed that the cytoskeleton has an intrinsic rhythm that "ruffles" the cell membrane every 10 seconds, but there were no projections created, so the cells didn't move. "It's as if the crew can still row without the coxswain but each person is rowing in a different direction so the boat just stays where it is," says Chuan-Hsiang Huang, a co-author of the study.

The team expected that when they removed the sensor proteins they would see no movement, based on the old idea that both random and directional cell movement required signaling from these proteins. However, they found instead that the messenger network is "excitable." That is, without the sensor proteins or external cues, the messenger proteins can still work on their own, telling the cytoskeleton to create projections here or there, moving the cells about randomly. "This situation could be compared to a boat without a rudder. The coxswain is there to coordinate the rowing of the crew so the boat does move, but not in any specific direction," explained co-author Ming Tang.

Devreotes says the most exciting implications of this research are those relevant to cancer metastasis. "Several of the messenger proteins that we studied are found in higher quantities during cancer progression, and it is likely that the resulting changes in cell movement are involved in the advancement of the disease," he says. "We now know that we have to create drugs that target the messenger proteins (not just the sensor proteins) in order to entirely immobilize tumor cells."

The other authors of the report are Changji Shi and Pablo Iglesias of The Johns Hopkins University.

This work was supported by grants from the National Institute of General Medical Sciences (GM28007, GM34933, GM71920) and the Damon Runyon Cancer Research Foundation.

On the Web:

Link to article: http://dx.doi.org/10.1038/ncb2859

Devreotes Lab: http://www.hopkinsmedicine.org/cellbio/devreotes/

Media Contacts:

Catherine Kolf
443-287-2251
ckolf@jhmi.edu
Vanessa McMains
410-502-9410
vmcmain1@jhmi.edu
Shawna Williams
410-955-8236
shawna@jhmi.edu

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>