Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Quadruple helix' DNA discovered in human cells

21.01.2013
Discovery opens up possibilities for a new generation of targeted therapies for cancer

In 1953, Cambridge researchers Watson and Crick published a paper describing the interweaving 'double helix' DNA structure - the chemical code for all life.

Now, in the year of that scientific landmark's 60th Anniversary, Cambridge researchers have published a paper proving that four-stranded 'quadruple helix' DNA structures - known as G-quadruplexes - also exist within the human genome. They form in regions of DNA that are rich in the building block guanine, usually abbreviated to 'G'.

The findings mark the culmination of over 10 years investigation by scientists to show these complex structures in vivo - in living human cells - working from the hypothetical, through computational modelling to synthetic lab experiments and finally the identification in human cancer cells using fluorescent biomarkers.

The research, published today in Nature Chemistry and funded by Cancer Research UK, goes on to show clear links between concentrations of four-stranded quadruplexes and the process of DNA replication, which is pivotal to cell division and production.

By targeting quadruplexes with synthetic molecules that trap and contain these DNA structures - preventing cells from replicating their DNA and consequently blocking cell division - scientists believe it may be possible to halt the runaway cell proliferation at the root of cancer.

"We are seeing links between trapping the quadruplexes with molecules and the ability to stop cells dividing, which is hugely exciting," said Professor Shankar Balasubramanian from the University of Cambridge's Department of Chemistry and Cambridge Research Institute, whose group produced the research.

"The research indicates that quadruplexes are more likely to occur in genes of cells that are rapidly dividing, such as cancer cells. For us, it strongly supports a new paradigm to be investigated - using these four-stranded structures as targets for personalised treatments in the future."

Physical studies over the last couple of decades had shown that quadruplex DNA can form in vitro - in the 'test tube', but the structure was considered to be a curiosity rather than a feature found in nature. The researchers now know for the first time that they actually form in the DNA of human cells.

"This research further highlights the potential for exploiting these unusual DNA structures to beat cancer – the next part of this pipeline is to figure out how to target them in tumour cells," said Dr Julie Sharp, senior science information manager at Cancer Research UK.

"It's been sixty years since its structure was solved but work like this shows us that the story of DNA continues to twist and turn."

The study published today was led by Giulia Biffi, a researcher in Balasubramaninan's lab at the Cambridge Research Institute.

By building on previous research, Biffi was able to generate antibody proteins that detect and bind to areas in a human genome rich in quadruplex-structured DNA, proving their existence in living human cells.

Using fluorescence to mark the antibodies, the researchers could then identify 'hot spots' for the occurrence of four-stranded DNA - both where in the genome and, critically, at what stage of cell division.

While quadruplex DNA is found fairly consistently throughout the genome of human cells and their division cycles, a marked increase was shown when the fluorescent staining grew more intense during the 's-phase' - the point in a cell cycle where DNA replicates before the cell divides.

Cancers are usually driven by genes called oncogenes that have mutated to increase DNA replication - causing cell proliferation to spiral out of control, and leading to tumour growth.

The increased DNA replication rate in oncogenes leads to an intensity in the quadruplex structures. This means that potentially damaging cellular activity can be targeted with synthetic molecules or other forms of treatments.

"We have found that by trapping the quadruplex DNA with synthetic molecules we can sequester and stabilise them, providing important insights into how we might grind cell division to a halt," said Balasubramanian.

"There is a lot we don't know yet. One thought is that these quadruplex structures might be a bit of a nuisance during DNA replication - like knots or tangles that form.

"Did they evolve for a function? It's a philosophical question as to whether they are there by design or not - but they exist and nature has to deal with them. Maybe by targeting them we are contributing to the disruption they cause."

The study showed that if an inhibitor is used to block DNA replication, quadruplex levels go down - proving the idea that DNA is dynamic, with structures constantly being formed and unformed.

The researchers also previously found that an overactive gene with higher levels of Quadruplex DNA is more vulnerable to external interference.

"The data supports the idea that certain cancer genes can be usefully interfered with by small molecules designed to bind specific DNA sequences," said Balasubramanian.

"Many current cancer treatments attack DNA, but it's not clear what the rules are. We don't even know where in the genome some of them react - it can be a scattergun approach.

"The possibility that particular cancer cells harbouring genes with these motifs can now be targeted, and appear to be more vulnerable to interference than normal cells, is a thrilling prospect.

"The 'quadruple helix' DNA structure may well be the key to new ways of selectively inhibiting the proliferation of cancer cells. The confirmation of its existence in human cells is a real landmark."

Fred Lewsey | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>