Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Quadruple helix' DNA discovered in human cells

21.01.2013
Discovery opens up possibilities for a new generation of targeted therapies for cancer

In 1953, Cambridge researchers Watson and Crick published a paper describing the interweaving 'double helix' DNA structure - the chemical code for all life.

Now, in the year of that scientific landmark's 60th Anniversary, Cambridge researchers have published a paper proving that four-stranded 'quadruple helix' DNA structures - known as G-quadruplexes - also exist within the human genome. They form in regions of DNA that are rich in the building block guanine, usually abbreviated to 'G'.

The findings mark the culmination of over 10 years investigation by scientists to show these complex structures in vivo - in living human cells - working from the hypothetical, through computational modelling to synthetic lab experiments and finally the identification in human cancer cells using fluorescent biomarkers.

The research, published today in Nature Chemistry and funded by Cancer Research UK, goes on to show clear links between concentrations of four-stranded quadruplexes and the process of DNA replication, which is pivotal to cell division and production.

By targeting quadruplexes with synthetic molecules that trap and contain these DNA structures - preventing cells from replicating their DNA and consequently blocking cell division - scientists believe it may be possible to halt the runaway cell proliferation at the root of cancer.

"We are seeing links between trapping the quadruplexes with molecules and the ability to stop cells dividing, which is hugely exciting," said Professor Shankar Balasubramanian from the University of Cambridge's Department of Chemistry and Cambridge Research Institute, whose group produced the research.

"The research indicates that quadruplexes are more likely to occur in genes of cells that are rapidly dividing, such as cancer cells. For us, it strongly supports a new paradigm to be investigated - using these four-stranded structures as targets for personalised treatments in the future."

Physical studies over the last couple of decades had shown that quadruplex DNA can form in vitro - in the 'test tube', but the structure was considered to be a curiosity rather than a feature found in nature. The researchers now know for the first time that they actually form in the DNA of human cells.

"This research further highlights the potential for exploiting these unusual DNA structures to beat cancer – the next part of this pipeline is to figure out how to target them in tumour cells," said Dr Julie Sharp, senior science information manager at Cancer Research UK.

"It's been sixty years since its structure was solved but work like this shows us that the story of DNA continues to twist and turn."

The study published today was led by Giulia Biffi, a researcher in Balasubramaninan's lab at the Cambridge Research Institute.

By building on previous research, Biffi was able to generate antibody proteins that detect and bind to areas in a human genome rich in quadruplex-structured DNA, proving their existence in living human cells.

Using fluorescence to mark the antibodies, the researchers could then identify 'hot spots' for the occurrence of four-stranded DNA - both where in the genome and, critically, at what stage of cell division.

While quadruplex DNA is found fairly consistently throughout the genome of human cells and their division cycles, a marked increase was shown when the fluorescent staining grew more intense during the 's-phase' - the point in a cell cycle where DNA replicates before the cell divides.

Cancers are usually driven by genes called oncogenes that have mutated to increase DNA replication - causing cell proliferation to spiral out of control, and leading to tumour growth.

The increased DNA replication rate in oncogenes leads to an intensity in the quadruplex structures. This means that potentially damaging cellular activity can be targeted with synthetic molecules or other forms of treatments.

"We have found that by trapping the quadruplex DNA with synthetic molecules we can sequester and stabilise them, providing important insights into how we might grind cell division to a halt," said Balasubramanian.

"There is a lot we don't know yet. One thought is that these quadruplex structures might be a bit of a nuisance during DNA replication - like knots or tangles that form.

"Did they evolve for a function? It's a philosophical question as to whether they are there by design or not - but they exist and nature has to deal with them. Maybe by targeting them we are contributing to the disruption they cause."

The study showed that if an inhibitor is used to block DNA replication, quadruplex levels go down - proving the idea that DNA is dynamic, with structures constantly being formed and unformed.

The researchers also previously found that an overactive gene with higher levels of Quadruplex DNA is more vulnerable to external interference.

"The data supports the idea that certain cancer genes can be usefully interfered with by small molecules designed to bind specific DNA sequences," said Balasubramanian.

"Many current cancer treatments attack DNA, but it's not clear what the rules are. We don't even know where in the genome some of them react - it can be a scattergun approach.

"The possibility that particular cancer cells harbouring genes with these motifs can now be targeted, and appear to be more vulnerable to interference than normal cells, is a thrilling prospect.

"The 'quadruple helix' DNA structure may well be the key to new ways of selectively inhibiting the proliferation of cancer cells. The confirmation of its existence in human cells is a real landmark."

Fred Lewsey | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>