Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Pharmaceutical' approach boosts oil production from algae

09.04.2013
Taking an approach similar to that used for discovering new therapeutic drugs, chemists at the University of California, Davis, have found several compounds that can boost oil production by green microscopic algae, a potential source of biodiesel and other "green" fuels. The work appears online in the journal Chemical Biology.
Microalgae are single-celled organisms that, like green plants, use photosynthesis to capture carbon dioxide and turn it into complex compounds, including oils and lipids. Marine algae species can be raised in saltwater ponds and so do not compete with food crops for land or fresh water.

"They can live in saltwater, they take sunlight and carbon dioxide as a building block, and make these long chains of oil that can be converted to biodiesel," said Annaliese Franz, assistant professor of chemistry and an author of the paper.

Franz, graduate students Megan Danielewicz, Diana Wong and Lisa Anderson, and undergraduate student Jordan Boothe screened 83 compounds for their effects on growth and oil production in four strains of microalgae. They identified several that could boost oil production by up to 85 percent, without decreasing growth.

Among the promising compounds were common antioxidants such as epigallocatechin gallate, found in green tea, and butylated hydroxyanisole (BHA), a common food preservative.

The team has carried out growth experiments in culture volumes of up to half a liter. They calculate that some of the chemicals they analyzed would be cost-effective when scaled up to a 50,000 liter pond. After oils have been extracted from the algae, the remaining mass can be processed for animal feed or other uses.

Franz came to UC Davis in 2007 with a background in pharmaceutical chemistry. Given the campus's emphasis on biofuels, she started thinking about applying high-throughput techniques used to screen for new drugs to looking for compounds that could affect microalgae.

The idea, Franz said, is to look for small molecules that can affect a metabolic pathway in a cell. By setting up large numbers of cell cultures and measuring a simple readout in each, it's possible to screen for large numbers of different compounds in a short time and home in on the most promising.

"The basic concept comes from the pharmaceutical industry, and it's been used for human cells, plants, yeast, but not so far for algae," she said.

"There are many cases where small molecules are having an effect to treat a disease, so it makes sense that if you can affect a pathway in a human for a disease, you can affect a pathway in an algal cell," Franz said.

Patents on the work are pending. The research was funded by Chevron Technology Ventures through a cooperative agreement with UC Davis.
About UC Davis

For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has more than 33,000 students, more than 2,500 faculty and more than 21,000 staff, an annual research budget of nearly $750 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media contact(s):
Annaliese Franz, Chemistry, (530) 752-9820, akfranz@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>