Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Pharmaceutical' approach boosts oil production from algae

09.04.2013
Taking an approach similar to that used for discovering new therapeutic drugs, chemists at the University of California, Davis, have found several compounds that can boost oil production by green microscopic algae, a potential source of biodiesel and other "green" fuels. The work appears online in the journal Chemical Biology.
Microalgae are single-celled organisms that, like green plants, use photosynthesis to capture carbon dioxide and turn it into complex compounds, including oils and lipids. Marine algae species can be raised in saltwater ponds and so do not compete with food crops for land or fresh water.

"They can live in saltwater, they take sunlight and carbon dioxide as a building block, and make these long chains of oil that can be converted to biodiesel," said Annaliese Franz, assistant professor of chemistry and an author of the paper.

Franz, graduate students Megan Danielewicz, Diana Wong and Lisa Anderson, and undergraduate student Jordan Boothe screened 83 compounds for their effects on growth and oil production in four strains of microalgae. They identified several that could boost oil production by up to 85 percent, without decreasing growth.

Among the promising compounds were common antioxidants such as epigallocatechin gallate, found in green tea, and butylated hydroxyanisole (BHA), a common food preservative.

The team has carried out growth experiments in culture volumes of up to half a liter. They calculate that some of the chemicals they analyzed would be cost-effective when scaled up to a 50,000 liter pond. After oils have been extracted from the algae, the remaining mass can be processed for animal feed or other uses.

Franz came to UC Davis in 2007 with a background in pharmaceutical chemistry. Given the campus's emphasis on biofuels, she started thinking about applying high-throughput techniques used to screen for new drugs to looking for compounds that could affect microalgae.

The idea, Franz said, is to look for small molecules that can affect a metabolic pathway in a cell. By setting up large numbers of cell cultures and measuring a simple readout in each, it's possible to screen for large numbers of different compounds in a short time and home in on the most promising.

"The basic concept comes from the pharmaceutical industry, and it's been used for human cells, plants, yeast, but not so far for algae," she said.

"There are many cases where small molecules are having an effect to treat a disease, so it makes sense that if you can affect a pathway in a human for a disease, you can affect a pathway in an algal cell," Franz said.

Patents on the work are pending. The research was funded by Chevron Technology Ventures through a cooperative agreement with UC Davis.
About UC Davis

For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has more than 33,000 students, more than 2,500 faculty and more than 21,000 staff, an annual research budget of nearly $750 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media contact(s):
Annaliese Franz, Chemistry, (530) 752-9820, akfranz@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>