Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Normal' cells far from cancer give nanosignals of trouble

09.07.2009
A new Northwestern University-led study of human colon, pancreatic and lung cells is the first to report that cancer cells and their non-cancerous cell neighbors, although quite different under the microscope, share very similar structural abnormalities on the nanoscale level.

The findings, obtained using an optical technique that can detect features as small as 20 nanometers, validate the "field effect," a biological phenomenon in which cells located some distance from a malignant or premalignant tumor undergo molecular and other kinds of abnormal changes.

The most striking findings were that these nanoscale alterations occurred at some distance from the tumor and, importantly, could be identified by assessing more easily accessible tissue, such as the cheek for lung cancer detection.

The partial wave spectroscopy (PWS) technique, once optimized, could be used to detect cell abnormalities early and help physicians assess who might be at risk for developing cancer. Like a pap smear of the cervix, a simple brushing of cells is all that is needed to get the specimen required for testing.

Using PWS, the researchers made another important discovery: the abnormalities found in the nanoarchitecture of the colon cells are the same abnormalities as those found in the pancreas and lung, illustrating commonality across three very different organs.

The results are published online by the journal Cancer Research. Authors of the paper include researchers from Northwestern and NorthShore University HealthSystem.

"Our data provide a strong argument that these nanoscale changes are general phenomena in carcinogenesis and occur early in the process," says Vadim Backman, professor of biomedical engineering at the McCormick School of Engineering and Applied Science and the paper's senior author. "These changes occur not only in cancer cells but in cells far from the tumor site and are the same in at least three different types of cancer. Given its ability to detect these changes, PWS could be used in the early screening of a variety of cancers."

Backman and his Northwestern colleagues recently developed PWS, which provides researchers with unprecedented information on the health of cells by measuring the increase in disorder -- the structural variations -- within the cell. PWS quantifies the statistical properties of cell nanoscale architecture by using the signal generated by light waves striking the complex structure of the cell.

A cell's nanoarchitecture includes the fundamental "building blocks" of the cell, which drive the molecular processes that allow a cell to function. These structures are most likely to be altered with the onset of cancer formation, says Backman, who is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Backman's colleague and co-author, Hemant Roy, M.D., agrees. "While very preliminary, if validated, this approach may be of great clinical and biological value," says Roy, director of gastroenterology research at NorthShore. "Indeed, the ability to determine cancer risk by interrogating readily accessible tissue may provide an important step forward in cancer screening."

"Partial wave spectroscopy is a paradigm shift from conventional diagnostic techniques, which involve interrogating the actual tumor region," adds the paper's first author, Hariharan Subramanian, a postdoctoral fellow in Backman's research group.

PWS can look inside the cell and see those critical building blocks, which include proteins, nucleosomes and intracellular membranes, and detect changes to this nanoarchitecture. Conventional microscopy cannot do this, and other techniques that can (to some degree) are expensive and complex. PWS is simple, inexpensive and minimally invasive.

In the studies, cells were collected by brushing the rectum (for the colon), the duodenum (for the pancreas) and the cheek (for the lungs). The PWS technique was able to distinguish between the patients with cancer and those without. The cancer cells showed an increase in structural disorder on the nanoscale.

For each organ, the researchers next studied non-cancerous cells that neighbored tumors. When viewed using microscopy, all three cell types looked normal. PWS, however, detected a level of disorder in the cell architecture that was much closer to that of cancer cells than it was to normal cells.

The paper is titled "Nanoscale Cellular Changes in Field Carcinogenesis Detected by Partial Wave Spectroscopy." In addition to Backman, Roy and Subramanian, the paper's other authors are Prabhakar Pradhan, of Northwestern University; Michael J. Goldberg, Joseph Muldoon, Charles Sturgis, Thomas Hensing, Daniel Ray, Andrej Bogojevic, Jameel Mohammed and Jeen-Soo Chang, of NorthShore University HealthSystem; and Randall E. Brand, formerly with NorthShore, now with the University of Pittsburgh.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>