Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Museomics' yields new insights into extinct Tasmanian tiger

13.01.2009
In 1902, the National Zoo in Washington D.C. arranged to have a unique and endangered animal called the thylacine, or Tasmanian Tiger, brought to the United States from Tasmania.

Later that year, a female and her three cubs arrived at the zoo. However, by the mid-1930s, the thylacine was extinct, leaving behind only preserved museum specimens.

In a study published online today in Genome Research (www.genome.org), researchers have used state-of-the-art DNA sequencing technology to analyze preserved thylacines, including one of those brought to the National Zoo more than 100 years ago, making novel discoveries in thylacine genomics and the burgeoning field of "museomics."

The thylacine was actually not a tiger at all, rather a marsupial with many dog-like features—a striking example of convergent evolution in mammals. Extensively hunted by farmers, the thylacine was becoming increasingly rare in the wild at the time the National Zoo acquired the female and cubs, and was declared extinct in 1936 upon the death of the last captive animal. Genetic sequences sampled from the preserved specimens of the National Zoo thyalcine family have been studied in recent years, however these investigations were severely limited by DNA contamination and degradation.

Now, in a strategy nicknamed "museomics," researchers are using improved methods for sampling DNA combined with the latest sequencing technology to analyze preserved museum samples. In this study, an international team of scientists has sequenced mitochondrial and nuclear DNA from the hair of the male thylacine offspring brought to the National Zoo in 1902 and a female that died in the London Zoo in 1893. In addition to refining the place of this unusual animal in evolutionary history, genetic clues to the impending extinction of the thylacine became apparent.

"What I find amazing is that the two specimens are so similar," said Dr. Anders Götherström of Uppsala University in Sweden. "There is very little genetic variation between them." Götherström, a co-author of the study, explained that a lack of genetic diversity is indicative of a species on the brink of extinction, and we are now observing this more than 70 years later.

In addition to using the mitochondrial genome sequence to study the phylogeny of the thylacine, the authors also investigated the collection of genetic material of microbial and viral origin (the "metagenome") present on the museum samples. Interestingly, the research team found distinct differences in the microbial content of the hair of the wild-born thylacine from the London Zoo and the captive-born thylacine from the National Zoo. Furthermore, the authors noted that the specimens were preserved by differing methods. "Analyzing the microbial content of museum specimens will therefore allow us to gain insight into the microbial flora that lives on the exhibit samples and help to develop means to further protect them," said Dr. Stephan Schuster of Penn State University, also an author of the report.

This work has established the groundwork for more detailed genetic analysis of the thylacine, opened the door to more museomic studies using the treasure trove of museum specimens worldwide, and will raise dialogue about even bigger projects. "The large amount of mitochondrial and nuclear DNA gained in our study demonstrates the feasibility of a thylacine genome project," explained Schuster. "It will also revive discussions on the possible resurrection of the animal."

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>