Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'magnetic yeast' marks step toward harnessing Nature's magnetic capabilities

29.02.2012
Researchers at Harvard's Wyss Institute and Harvard Medical School induce magnetic sensitivity in a non-magnetic organism

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard Medical School have developed a method for inducing magnetic sensitivity in an organism that is not naturally magnetic—yeast. Their technology could potentially be used to magnetize a variety of different cell types in medical, industrial and research applications. The research findings appear in today's issue of PLoS Biology.

Magnetic fields are everywhere, but few organisms can sense them. Those that do, such as birds and butterflies, use magnetic sensitivity as a kind of natural global positioning system to guide them along migratory routes. How these few magnetically aware organisms gain their magnetism remains one of biology's unsolved mysteries.

Researchers Pamela Silver, Ph.D., and Keiji Nishida, Ph.D., were able to imbue yeast with similar properties. Silver, the principal investigator, is a founding core faculty member at the Wyss Institute and a professor of Biochemistry and Systems Biology at Harvard Medical School (HMS). Nishida is a research fellow in Systems Biology at HMS.

"Magnetism in nature is a unique and mysterious biological function that very few living systems exploit," said Silver. "So while magnetic yeast may not sound like a serious scientific breakthrough, it's actually a highly significant first step toward harnessing this natural phenomenon and applying it to all sorts of important practical purposes."

The presence of iron can cause magnetism, but most cells, if exposed to this common metal, hide it away in sealed-off cavities where it cannot have an effect. Silver and Nishida were able to block expression of the protein that causes the iron sequestration, allowing the iron to circulate freely throughout the yeast cell. In this way, they created enough magnetic sensitivity in the cell to cause it to migrate toward an external magnet.

The researchers also found a gene that correlates with magnetism by instructing the production of a critical protein that can dial up magnetism. They then enhanced the magnetic sensitivity even further through interaction with a second protein that regulates cell metabolism. Since the same metabolic protein functions similarly in cells ranging from simple yeast to more advanced—even human—cells, the new method could potentially be applied to a much wider range of organisms.

Silver notes that in an industrial setting, magnetization could be extremely helpful as a means of targeting and isolating specific cells. Contaminated cells could be pulled out and disposed of during the processing of biological materials, and cells that are critical to a certain manufacturing process could be isolated and put to use. Magnetic cells could also be used to interact with non-living machinery. For example, magnetism could be used in tissue engineering to guide cells to layer themselves on a scaffold in a specific way. New therapies might one day be created in which cells are engineered to respond to a magnetic field by growing or healing, and implanted magnetic stem cells might one day be tracked with magnetic resonance imaging.

"This work shows how design principles from one type of cell can be harnessed using synthetic biology to transfer novel functionalities to another, which is a core approach driving the field of biologically inspired engineering," said Wyss Institute Founding Director Donald Ingber, M.D. Ph.D. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Children's Hospital Boston, and Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences. "The ability to control cells magnetically will also synergize with many other technologies in the pipeline at the Wyss Institute that rely on use of magnetic fields to control cell functions remotely, or to isolate rare cells from biological fluids."

About the Wyss Institute for Biologically Inspired Engineering at Harvard University

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard's Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Children's Hospital Boston, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

Twig Mowatt | EurekAlert!
Further information:
http://wyss.harvard.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>