Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Liposuction leftovers' easily converted to IPS cells

09.09.2009
Globs of human fat removed during liposuction conceal versatile cells that are more quickly and easily coaxed to become induced pluripotent stem cells, or iPS cells, than are the skin cells most often used by researchers, according to a new study from Stanford's School of Medicine.

"We've identified a great natural resource," said Stanford surgery professor and co-author of the research, Michael Longaker, MD, who has called the readily available liposuction leftovers "liquid gold." Reprogramming adult cells to function like embryonic stem cells is one way researchers hope to create patient-specific cell lines to regenerate tissue or to study specific diseases in the laboratory.

"Thirty to 40 percent of adults in this country are obese," agreed cardiologist Joseph Wu, MD, PhD, the paper's senior author. "Not only can we start with a lot of cells, we can reprogram them much more efficiently. Fibroblasts, or skin cells, must be grown in the lab for three weeks or more before they can be reprogrammed. But these stem cells from fat are ready to go right away."

The fact that the cells can also be converted without the need for mouse-derived "feeder cells" may make them an ideal starting material for human therapies. Feeder cells are often used when growing human skin cells outside the body, but physicians worry that cross-species contamination could make them unsuitable for human use.

The findings will be published online Sept. 7 in the Proceedings of the National Academy of Sciences. Longaker is the deputy director of Stanford's Stem Cell Biology and Regenerative Medicine Institute and director of children's surgical research at Lucile Packard Children's Hospital. Wu is an assistant professor of cardiology and radiology, and a member of Stanford's Cardiovascular Institute.

Even those of us who are not obese would probably be happy to part with a couple of pounds (or more) of flab. Nestled within this unwanted latticework of fat cells and collagen are multipotent cells called adipose, or fat, stem cells. Unlike highly specialized skin-cell fibroblasts, these cells in the fat have a relatively wide portfolio of differentiation options—becoming fat, bone or muscle as needed. It's this pre-existing flexibility, the researchers believe, that gives these cell an edge over the skin cells.

"These cells are not as far along on the differentiation pathway, so they're easier to back up to an earlier state," said first author and postdoctoral scholar Ning Sun, PhD, who conducted the research in both Longaker's and Wu's laboratories. "They are more embryonic-like than fibroblasts, which take more effort to reprogram."

These reprogrammed iPS cells are usually created by expressing four genes, called Yamanaka factors, normally unexpressed (or expressed at very low levels) in adult cells.

Sun found that the fat stem cells actually express higher starting levels of two of the four reprogramming genes than do adult skin cells—suggesting that these cells are already primed for change. When he added all four genes, about 0.01 percent of the skin-cell fibroblasts eventually became iPS cells but about 0.2 percent of the fat stem cells did so—a 20-fold improvement in efficiency.

The new iPS cells passed the standard tests for pluripotency: They formed tumors called teratomas when injected into immunocompromised mice, and they could differentiate into cells from the three main tissue types in the body, including neurons, muscle and gut epithelium. The researchers are now investigating whether the gene expression profiles of the fat stem cells could be used to identify a subpopulation that could be reprogrammed even more efficiently.

"The idea of reprogramming a cell from your body to become anything your body needs is very exciting," said Longaker, who emphasized that the work involved not just a collaboration between his lab and Wu's, but also between the two Stanford institutes. "The field now needs to move forward in ways that the Food and Drug Administration would approve —with cells that can be efficiently reprogrammed without the risk of cross-species contamination—and Stanford is an ideal place for that to happen."

"Imagine if we could isolate fat cells from a patient with some type of congenital cardiac disease," said Wu. "We could then differentiate them into cardiac cells, study how they respond to different drugs or stimuli and see how they compare to normal cells. This would be a great advance."

In addition to Sun, Wu and Longaker, other Stanford collaborators on the research include postdoctoral scholars Nicholas Panetta, MD, Deepak Gupta, MD, and Shijun Hu, PhD; graduate student Kitchener Wilson; medical student Andrew Lee; research assistant Fangjun Jia, PhD; associate professor of pathology and of pediatrics Athena Cherry, PhD; and professor of cardiothoracic surgery Robert Robbins, MD.

The research was supported by the Mallinckrodt Foundation, the American Heart Association, the California Institute for Regenerative Medicine, the National Institutes of Health, the Stanford Cardiovascular Institute, the Oak Foundation and the Hagey Laboratory for Pediatric Regenerative Medicine.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>