Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Liposuction leftovers' easily converted to IPS cells

Globs of human fat removed during liposuction conceal versatile cells that are more quickly and easily coaxed to become induced pluripotent stem cells, or iPS cells, than are the skin cells most often used by researchers, according to a new study from Stanford's School of Medicine.

"We've identified a great natural resource," said Stanford surgery professor and co-author of the research, Michael Longaker, MD, who has called the readily available liposuction leftovers "liquid gold." Reprogramming adult cells to function like embryonic stem cells is one way researchers hope to create patient-specific cell lines to regenerate tissue or to study specific diseases in the laboratory.

"Thirty to 40 percent of adults in this country are obese," agreed cardiologist Joseph Wu, MD, PhD, the paper's senior author. "Not only can we start with a lot of cells, we can reprogram them much more efficiently. Fibroblasts, or skin cells, must be grown in the lab for three weeks or more before they can be reprogrammed. But these stem cells from fat are ready to go right away."

The fact that the cells can also be converted without the need for mouse-derived "feeder cells" may make them an ideal starting material for human therapies. Feeder cells are often used when growing human skin cells outside the body, but physicians worry that cross-species contamination could make them unsuitable for human use.

The findings will be published online Sept. 7 in the Proceedings of the National Academy of Sciences. Longaker is the deputy director of Stanford's Stem Cell Biology and Regenerative Medicine Institute and director of children's surgical research at Lucile Packard Children's Hospital. Wu is an assistant professor of cardiology and radiology, and a member of Stanford's Cardiovascular Institute.

Even those of us who are not obese would probably be happy to part with a couple of pounds (or more) of flab. Nestled within this unwanted latticework of fat cells and collagen are multipotent cells called adipose, or fat, stem cells. Unlike highly specialized skin-cell fibroblasts, these cells in the fat have a relatively wide portfolio of differentiation options—becoming fat, bone or muscle as needed. It's this pre-existing flexibility, the researchers believe, that gives these cell an edge over the skin cells.

"These cells are not as far along on the differentiation pathway, so they're easier to back up to an earlier state," said first author and postdoctoral scholar Ning Sun, PhD, who conducted the research in both Longaker's and Wu's laboratories. "They are more embryonic-like than fibroblasts, which take more effort to reprogram."

These reprogrammed iPS cells are usually created by expressing four genes, called Yamanaka factors, normally unexpressed (or expressed at very low levels) in adult cells.

Sun found that the fat stem cells actually express higher starting levels of two of the four reprogramming genes than do adult skin cells—suggesting that these cells are already primed for change. When he added all four genes, about 0.01 percent of the skin-cell fibroblasts eventually became iPS cells but about 0.2 percent of the fat stem cells did so—a 20-fold improvement in efficiency.

The new iPS cells passed the standard tests for pluripotency: They formed tumors called teratomas when injected into immunocompromised mice, and they could differentiate into cells from the three main tissue types in the body, including neurons, muscle and gut epithelium. The researchers are now investigating whether the gene expression profiles of the fat stem cells could be used to identify a subpopulation that could be reprogrammed even more efficiently.

"The idea of reprogramming a cell from your body to become anything your body needs is very exciting," said Longaker, who emphasized that the work involved not just a collaboration between his lab and Wu's, but also between the two Stanford institutes. "The field now needs to move forward in ways that the Food and Drug Administration would approve —with cells that can be efficiently reprogrammed without the risk of cross-species contamination—and Stanford is an ideal place for that to happen."

"Imagine if we could isolate fat cells from a patient with some type of congenital cardiac disease," said Wu. "We could then differentiate them into cardiac cells, study how they respond to different drugs or stimuli and see how they compare to normal cells. This would be a great advance."

In addition to Sun, Wu and Longaker, other Stanford collaborators on the research include postdoctoral scholars Nicholas Panetta, MD, Deepak Gupta, MD, and Shijun Hu, PhD; graduate student Kitchener Wilson; medical student Andrew Lee; research assistant Fangjun Jia, PhD; associate professor of pathology and of pediatrics Athena Cherry, PhD; and professor of cardiothoracic surgery Robert Robbins, MD.

The research was supported by the Mallinckrodt Foundation, the American Heart Association, the California Institute for Regenerative Medicine, the National Institutes of Health, the Stanford Cardiovascular Institute, the Oak Foundation and the Hagey Laboratory for Pediatric Regenerative Medicine.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit

Krista Conger | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>