Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Jumping genes' find new homes in humans more often than previously thought

25.06.2010
Transposons create genomic instability and are implicated in cancer and other diseases

Transposons, or "jumping genes," make up roughly half of the human genome. Geneticists previously estimated that they replicate and insert themselves into new locations roughly one in every 20 live births.

New results, published in the June 25, 2010 issue of Cell, suggest that every newborn is likely to have a new transposon somewhere in his or her genome.

"Now it looks like every person might have a new insertion somewhere," says senior author Scott Devine, PhD, associate professor of medicine at the University of Maryland School of Medicine's Institute for Genome Sciences. "This is an under-appreciated mechanism for continuing mutation of the human genome."

The research was initiated at Emory University School of Medicine, where Devine was in the Department of Biochemistry. First author Rebecca Iskow, PhD (now a postdoctoral fellow at Brigham & Women's Hospital in Boston) was a graduate student at Emory. Two other papers on human transposons appear in the same issue of Cell.

Transposons resemble e-mail spam: short repeated sequences that have no obvious function other than making more of themselves. The full name for the type of transposon that is most abundant in the human genome is retrotransposon. The "retro" term comes from how they replicate: first, the DNA is transcribed (copied) into RNA, and the RNA is reverse-transcribed into DNA again. This process normally only happens during very early in development, when the cells that will become eggs and sperm have not turned down a separate path of differentiation.

"Transposons are the original selfish genes, and this strategy makes sense for them, because it makes sure new copies will get carried into the next generation," Devine says.

While working in Devine's lab as a graduate student, Iskow devised a technique for "amplifying" the stretches of individual genomes that border transposons and reading thousands of the junctions with advanced sequencing techniques, then comparing them to the reference human genome.

"The basic problem was that a new insertion can be anywhere within three billion base pairs – how do you find it compared to all the other ones?" Devine says.

Ninety-seven percent of genomes the team surveyed had at least one rare insertion of the L1 variety of transposon that was present in only a single human in the study, and some genomes had several. Since the study surveyed 76 genomes, "rare" insertions could still be shared by large groups consisting of thousands of people. Rare insertions corresponded to the most recent transposons, which are less likely to have their jumping abilities impaired by other types of mutations.

Devine's team also showed that transposons frequently jump to new locations during the process of tumor formation. Surveying 20 lung tumors and comparing their genomes against the normal tissues they came from, the team found that six tumors had new transposon insertions that were not present in the normal adjacent tissues.

"This indicates that transposons are jumping in tumors and are generating a new kind of genomic instability," Devine says.

Transposons can inactivate tumor suppressor genes and can facilitate rearrangements that involve large stretches of chromosomes. Geneticists have already identified many transposons that interrupt genes and cause human diseases, including neurofibromatosis, hemophilia and breast cancer.

Scientists believe a process called methylation, which silences genes during differentiationalso shuts off transposons' ability to jump. Analyzing the patterns of mutations in the lung tumors suggested that during tumor formation, modified methylation patterns may be allowing transposons to re-awaken, Devine says.

Several scientists from the Biomolecular Computing core facility and the Winship Cancer Institute of Emory University were involved in the research.

The research was supported by grants from the National Human Genome Research Institute, the American Cancer Society and Sun Microsystems.

Reference:
R.C. Iskow, M.T. McCabe, R.E. Mills, S. Torene, E.G. Van Meir, P.M. Vertino and S.E. Devine. Natural mutagenesis of human genomes by endogenous retrotransposons

Cell (2010).

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has a $2.5 billion budget, 17,600 employees, 2,500 full-time and 1,500 affiliated faculty, 4,700 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com - @emoryhealthsci (Twitter) - http://emoryhealthsciences.org

Vince Dollard | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>