Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Jumping genes' find new homes in humans more often than previously thought

25.06.2010
Transposons create genomic instability and are implicated in cancer and other diseases

Transposons, or "jumping genes," make up roughly half of the human genome. Geneticists previously estimated that they replicate and insert themselves into new locations roughly one in every 20 live births.

New results, published in the June 25, 2010 issue of Cell, suggest that every newborn is likely to have a new transposon somewhere in his or her genome.

"Now it looks like every person might have a new insertion somewhere," says senior author Scott Devine, PhD, associate professor of medicine at the University of Maryland School of Medicine's Institute for Genome Sciences. "This is an under-appreciated mechanism for continuing mutation of the human genome."

The research was initiated at Emory University School of Medicine, where Devine was in the Department of Biochemistry. First author Rebecca Iskow, PhD (now a postdoctoral fellow at Brigham & Women's Hospital in Boston) was a graduate student at Emory. Two other papers on human transposons appear in the same issue of Cell.

Transposons resemble e-mail spam: short repeated sequences that have no obvious function other than making more of themselves. The full name for the type of transposon that is most abundant in the human genome is retrotransposon. The "retro" term comes from how they replicate: first, the DNA is transcribed (copied) into RNA, and the RNA is reverse-transcribed into DNA again. This process normally only happens during very early in development, when the cells that will become eggs and sperm have not turned down a separate path of differentiation.

"Transposons are the original selfish genes, and this strategy makes sense for them, because it makes sure new copies will get carried into the next generation," Devine says.

While working in Devine's lab as a graduate student, Iskow devised a technique for "amplifying" the stretches of individual genomes that border transposons and reading thousands of the junctions with advanced sequencing techniques, then comparing them to the reference human genome.

"The basic problem was that a new insertion can be anywhere within three billion base pairs – how do you find it compared to all the other ones?" Devine says.

Ninety-seven percent of genomes the team surveyed had at least one rare insertion of the L1 variety of transposon that was present in only a single human in the study, and some genomes had several. Since the study surveyed 76 genomes, "rare" insertions could still be shared by large groups consisting of thousands of people. Rare insertions corresponded to the most recent transposons, which are less likely to have their jumping abilities impaired by other types of mutations.

Devine's team also showed that transposons frequently jump to new locations during the process of tumor formation. Surveying 20 lung tumors and comparing their genomes against the normal tissues they came from, the team found that six tumors had new transposon insertions that were not present in the normal adjacent tissues.

"This indicates that transposons are jumping in tumors and are generating a new kind of genomic instability," Devine says.

Transposons can inactivate tumor suppressor genes and can facilitate rearrangements that involve large stretches of chromosomes. Geneticists have already identified many transposons that interrupt genes and cause human diseases, including neurofibromatosis, hemophilia and breast cancer.

Scientists believe a process called methylation, which silences genes during differentiationalso shuts off transposons' ability to jump. Analyzing the patterns of mutations in the lung tumors suggested that during tumor formation, modified methylation patterns may be allowing transposons to re-awaken, Devine says.

Several scientists from the Biomolecular Computing core facility and the Winship Cancer Institute of Emory University were involved in the research.

The research was supported by grants from the National Human Genome Research Institute, the American Cancer Society and Sun Microsystems.

Reference:
R.C. Iskow, M.T. McCabe, R.E. Mills, S. Torene, E.G. Van Meir, P.M. Vertino and S.E. Devine. Natural mutagenesis of human genomes by endogenous retrotransposons

Cell (2010).

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has a $2.5 billion budget, 17,600 employees, 2,500 full-time and 1,500 affiliated faculty, 4,700 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com - @emoryhealthsci (Twitter) - http://emoryhealthsciences.org

Vince Dollard | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>