Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Jekyll and Hyde' cell may hold key to muscular dystrophy, fibrosis treatment

18.01.2010
A team of University of British Columbia researchers has identified fat-producing cells that possess "dual-personalities" and may further the development of treatments for muscle diseases such as muscular dystrophy and fibrosis.

The team found a new type of fibro/adipogenic progenitors, or FAPs, that generate fatty fibrous tissues when transplanted into damaged muscles in mice. Progenitors are similar to stem cells in their capacity to differentiate, but are limited in the number of times they can divide.

The findings are published in the current issue of Nature Cell Biology.

"These cells are typically dormant in muscle tissues," says lead author Fabio Rossi, Canada Research Chair in Regenerative Medicine. "Once activated by damage, they produce signals that coordinate tissue regeneration and then disappear. That's the Dr. Jekyll side of FAPs.

"In chronic muscle diseases such as muscular dystrophy, however, FAPs persist and may be contributing to over-production of scar tissues, resulting in fibrosis. That's the Mr. Hyde side," says Rossi, associate professor in the Department of Medical Genetics and the Biomedical Research Centre.

Better understanding of the role of FAPs could help encourage their healthy function or repress their negative impact, the researchers say. In the long term, drugs targeting these cells may be useful in a range of diseases characterized by fibrosis ranging from cardiovascular to lung and kidney disease, to organ transplantation. In addition, the cells' ability to generate new fat tissue could be exploited to target metabolic disease.

The study was supported by funding from the Canadian Institutes of Health Research, the Michael Smith Foundation for Health Research and The Foundation for Cell Therapy. The Biomedical Research Centre is affiliated with the Vancouver Coastal Health Research Institute.

The UBC Faculty of Medicine provides innovative programs in the health and life sciences, teaching students at the undergraduate, graduate and postgraduate levels, and generates more than $200 million in research funding each year. In 2007/08, out of the total UBC research endeavour, 53 per cent, or $247 million, came from academic and clinical teams in the Faculty of Medicine. For more information, visit www.med.ubc.ca.

The Biomedical Research Centre is an interdisciplinary research centre with the goal to generate new knowledge about how the immune system and adult stem cells accomplish their vital tasks, and how disturbances in these processes result in disease. The aim is to translate this new knowledge into innovative treatments for chronic diseases like arthritis, Alzheimer's disease, asthma, diabetes, and cancer. www.brc.ubc.ca.

VCH Research Institute is the research body of Vancouver Coastal Health Authority. In academic partnership with UBC, the institute advances health research and innovation across B.C., Canada, and beyond. www.vchri.ca.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>