Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Jekyll and Hyde' cell may hold key to muscular dystrophy, fibrosis treatment

18.01.2010
A team of University of British Columbia researchers has identified fat-producing cells that possess "dual-personalities" and may further the development of treatments for muscle diseases such as muscular dystrophy and fibrosis.

The team found a new type of fibro/adipogenic progenitors, or FAPs, that generate fatty fibrous tissues when transplanted into damaged muscles in mice. Progenitors are similar to stem cells in their capacity to differentiate, but are limited in the number of times they can divide.

The findings are published in the current issue of Nature Cell Biology.

"These cells are typically dormant in muscle tissues," says lead author Fabio Rossi, Canada Research Chair in Regenerative Medicine. "Once activated by damage, they produce signals that coordinate tissue regeneration and then disappear. That's the Dr. Jekyll side of FAPs.

"In chronic muscle diseases such as muscular dystrophy, however, FAPs persist and may be contributing to over-production of scar tissues, resulting in fibrosis. That's the Mr. Hyde side," says Rossi, associate professor in the Department of Medical Genetics and the Biomedical Research Centre.

Better understanding of the role of FAPs could help encourage their healthy function or repress their negative impact, the researchers say. In the long term, drugs targeting these cells may be useful in a range of diseases characterized by fibrosis ranging from cardiovascular to lung and kidney disease, to organ transplantation. In addition, the cells' ability to generate new fat tissue could be exploited to target metabolic disease.

The study was supported by funding from the Canadian Institutes of Health Research, the Michael Smith Foundation for Health Research and The Foundation for Cell Therapy. The Biomedical Research Centre is affiliated with the Vancouver Coastal Health Research Institute.

The UBC Faculty of Medicine provides innovative programs in the health and life sciences, teaching students at the undergraduate, graduate and postgraduate levels, and generates more than $200 million in research funding each year. In 2007/08, out of the total UBC research endeavour, 53 per cent, or $247 million, came from academic and clinical teams in the Faculty of Medicine. For more information, visit www.med.ubc.ca.

The Biomedical Research Centre is an interdisciplinary research centre with the goal to generate new knowledge about how the immune system and adult stem cells accomplish their vital tasks, and how disturbances in these processes result in disease. The aim is to translate this new knowledge into innovative treatments for chronic diseases like arthritis, Alzheimer's disease, asthma, diabetes, and cancer. www.brc.ubc.ca.

VCH Research Institute is the research body of Vancouver Coastal Health Authority. In academic partnership with UBC, the institute advances health research and innovation across B.C., Canada, and beyond. www.vchri.ca.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>