Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Jekyll and Hyde' cell may hold key to muscular dystrophy, fibrosis treatment

18.01.2010
A team of University of British Columbia researchers has identified fat-producing cells that possess "dual-personalities" and may further the development of treatments for muscle diseases such as muscular dystrophy and fibrosis.

The team found a new type of fibro/adipogenic progenitors, or FAPs, that generate fatty fibrous tissues when transplanted into damaged muscles in mice. Progenitors are similar to stem cells in their capacity to differentiate, but are limited in the number of times they can divide.

The findings are published in the current issue of Nature Cell Biology.

"These cells are typically dormant in muscle tissues," says lead author Fabio Rossi, Canada Research Chair in Regenerative Medicine. "Once activated by damage, they produce signals that coordinate tissue regeneration and then disappear. That's the Dr. Jekyll side of FAPs.

"In chronic muscle diseases such as muscular dystrophy, however, FAPs persist and may be contributing to over-production of scar tissues, resulting in fibrosis. That's the Mr. Hyde side," says Rossi, associate professor in the Department of Medical Genetics and the Biomedical Research Centre.

Better understanding of the role of FAPs could help encourage their healthy function or repress their negative impact, the researchers say. In the long term, drugs targeting these cells may be useful in a range of diseases characterized by fibrosis ranging from cardiovascular to lung and kidney disease, to organ transplantation. In addition, the cells' ability to generate new fat tissue could be exploited to target metabolic disease.

The study was supported by funding from the Canadian Institutes of Health Research, the Michael Smith Foundation for Health Research and The Foundation for Cell Therapy. The Biomedical Research Centre is affiliated with the Vancouver Coastal Health Research Institute.

The UBC Faculty of Medicine provides innovative programs in the health and life sciences, teaching students at the undergraduate, graduate and postgraduate levels, and generates more than $200 million in research funding each year. In 2007/08, out of the total UBC research endeavour, 53 per cent, or $247 million, came from academic and clinical teams in the Faculty of Medicine. For more information, visit www.med.ubc.ca.

The Biomedical Research Centre is an interdisciplinary research centre with the goal to generate new knowledge about how the immune system and adult stem cells accomplish their vital tasks, and how disturbances in these processes result in disease. The aim is to translate this new knowledge into innovative treatments for chronic diseases like arthritis, Alzheimer's disease, asthma, diabetes, and cancer. www.brc.ubc.ca.

VCH Research Institute is the research body of Vancouver Coastal Health Authority. In academic partnership with UBC, the institute advances health research and innovation across B.C., Canada, and beyond. www.vchri.ca.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>