Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Hub' of fear memory formation identified in brain cells

30.09.2008
A protein required for the earliest steps in embryonic development also plays a key role in solidifying fear memories in the brains of adult animals, scientists have revealed. An apparent "hub" for changes in the connections between brain cells, beta-catenin could be a potential target for drugs to enhance or interfere with memory formation.

The results are published online this week and appear in the October issue of Nature Neuroscience.

The protein beta-catenin acts like a Velcro strap, fastening cells' internal skeletons to proteins on their external membranes that connect them with other cells. In species ranging from flies to frogs to mice, it also can transmit early signals that separate an embryo into front and back or top and bottom.

During long-term memory formation, structural changes take place in the synapses – the connections between neurons in the brain, says Kerry Ressler, MD, PhD, associate professor of psychiatry and behavioral sciences at Emory University School of Medicine. Ressler is a researcher at Emory University's Yerkes National Primate Research Center, where the research was conducted, and a Howard Hughes Medical Institute investigator.

"We thought beta-catenin could be a hub for the changes that take place in the synapses during memory formation," says Ressler. "But because beta-catenin is so important during development, we couldn't take the standard approach of just knocking it out genetically."

He and graduate student Kimberly Maguschak used a variety of approaches to probe beta-catenin's role in fear memory formation, such as stabilizing the protein with a pulse of the psychiatric drug lithium and injecting a virus that could remove the gene for beta-catenin from brain cells.

If mice are electrically shocked just after they hear a certain tone, they gradually learn to fear that tone, and they show that fear by freezing.

To test beta-catenin's involvement in fear memory, Maguschak used a genetically engineered virus paired with mice that had the DNA around their beta-catenin genes modified. Once a cell is infected, the virus deletes the beta-catenin gene so that the cell can't make beta-catenin protein. She injected the virus into the amygdala, a part of the brain thought to be important for forming memories of emotionally charged events.

"We found that after beta-catenin is taken out, the mice can still learn to fear the shocks," says Maguschak. "But two days later, their fear doesn't seem to be retained because they spend half as much time freezing in response to the tone."

Beta-catenin appears to be turned on in the amygdala and involved in signaling during the learning process, Maguschak says.

"However, after the process of moving memories from short-term to long-term is complete, beta-catenin doesn't appear to be necessary anymore," she notes. "Injecting the virus after that point has no effect on the ability of the mice to express their fear memory."

Maguschak also found that lithium salts, when given to the mice before training, make them even more afraid of the tone two days later. Chemically, lithium inhibits an enzyme that usually targets beta-catenin for destruction, causing beta-catenin to become more active. She cautions that lithium is an imprecise tool for studying beta-catenin because it affects several enzymes in the brain.

"Psychiatrists have used lithium to treat mania and bipolar disorder for decades, but how it works is not well-understood," Ressler says. "Importantly, we gave the mice one acute dose of lithium, rather than letting it build to a stable level like in the clinical situation. It's not clear whether there is a connection between mood regulation and how lithium functions in our experiments with fear memory."

The authors suggest medications that inhibit beta-catenin could transiently interfere with memory formation after trauma, helping to prevent post-traumatic stress disorder. Conversely, drugs that enhance beta-catenin function within the brain might serve as new therapies to treating disorders of memory, such as Alzheimer's disease. Besides lithium, no drugs that target beta-catenin are available.

Ressler says his team's next step is to dissect the contribution of beta-catenin's different functions: cell adhesion and developmental signaling. He notes that when over-activated by genetic mutations, beta-catenin can drive tumor formation in several tissues, such as the colon, the skin and the kidney.

"It's possible we will see that a number of genes involved in cancer also are involved in learning and memory," he says.

Kathi Baker | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>