Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Hub' of fear memory formation identified in brain cells

30.09.2008
A protein required for the earliest steps in embryonic development also plays a key role in solidifying fear memories in the brains of adult animals, scientists have revealed. An apparent "hub" for changes in the connections between brain cells, beta-catenin could be a potential target for drugs to enhance or interfere with memory formation.

The results are published online this week and appear in the October issue of Nature Neuroscience.

The protein beta-catenin acts like a Velcro strap, fastening cells' internal skeletons to proteins on their external membranes that connect them with other cells. In species ranging from flies to frogs to mice, it also can transmit early signals that separate an embryo into front and back or top and bottom.

During long-term memory formation, structural changes take place in the synapses – the connections between neurons in the brain, says Kerry Ressler, MD, PhD, associate professor of psychiatry and behavioral sciences at Emory University School of Medicine. Ressler is a researcher at Emory University's Yerkes National Primate Research Center, where the research was conducted, and a Howard Hughes Medical Institute investigator.

"We thought beta-catenin could be a hub for the changes that take place in the synapses during memory formation," says Ressler. "But because beta-catenin is so important during development, we couldn't take the standard approach of just knocking it out genetically."

He and graduate student Kimberly Maguschak used a variety of approaches to probe beta-catenin's role in fear memory formation, such as stabilizing the protein with a pulse of the psychiatric drug lithium and injecting a virus that could remove the gene for beta-catenin from brain cells.

If mice are electrically shocked just after they hear a certain tone, they gradually learn to fear that tone, and they show that fear by freezing.

To test beta-catenin's involvement in fear memory, Maguschak used a genetically engineered virus paired with mice that had the DNA around their beta-catenin genes modified. Once a cell is infected, the virus deletes the beta-catenin gene so that the cell can't make beta-catenin protein. She injected the virus into the amygdala, a part of the brain thought to be important for forming memories of emotionally charged events.

"We found that after beta-catenin is taken out, the mice can still learn to fear the shocks," says Maguschak. "But two days later, their fear doesn't seem to be retained because they spend half as much time freezing in response to the tone."

Beta-catenin appears to be turned on in the amygdala and involved in signaling during the learning process, Maguschak says.

"However, after the process of moving memories from short-term to long-term is complete, beta-catenin doesn't appear to be necessary anymore," she notes. "Injecting the virus after that point has no effect on the ability of the mice to express their fear memory."

Maguschak also found that lithium salts, when given to the mice before training, make them even more afraid of the tone two days later. Chemically, lithium inhibits an enzyme that usually targets beta-catenin for destruction, causing beta-catenin to become more active. She cautions that lithium is an imprecise tool for studying beta-catenin because it affects several enzymes in the brain.

"Psychiatrists have used lithium to treat mania and bipolar disorder for decades, but how it works is not well-understood," Ressler says. "Importantly, we gave the mice one acute dose of lithium, rather than letting it build to a stable level like in the clinical situation. It's not clear whether there is a connection between mood regulation and how lithium functions in our experiments with fear memory."

The authors suggest medications that inhibit beta-catenin could transiently interfere with memory formation after trauma, helping to prevent post-traumatic stress disorder. Conversely, drugs that enhance beta-catenin function within the brain might serve as new therapies to treating disorders of memory, such as Alzheimer's disease. Besides lithium, no drugs that target beta-catenin are available.

Ressler says his team's next step is to dissect the contribution of beta-catenin's different functions: cell adhesion and developmental signaling. He notes that when over-activated by genetic mutations, beta-catenin can drive tumor formation in several tissues, such as the colon, the skin and the kidney.

"It's possible we will see that a number of genes involved in cancer also are involved in learning and memory," he says.

Kathi Baker | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>